来自经管之家
对于各式各样的数据统计分析软件,你了解多少呢?经管之家的这篇帖子经过潜心搜集,整理,总结了一些软件的大体介绍及区别,欢迎大家指正和补充。
这里先略过Excel和Eviews这种入门软件的介绍,直接从SPSS开始吧!
SPSS(Statistical Product and Service Solutions),“统计产品与服务解决方案”软件,是数据定量分析的工具,适用于社会科学(如经济分析,市场调研分析)和自然科学等林林总总的统计分析,国内使用的最多,领域也多。
SPSS就如一个傻瓜相机,界面友好,使用简单,但是功能强大,可以编程,能解决绝大部分统计学问题,适合初学者。它有一个可以点击的交互界面,能够使用下拉菜单来选择所需要执行的命令。它也有一个通过拷贝和粘贴的方法来学习其“句法”语言,但是这些句法通常非常复杂而且不是很直观。
SPSS致力于简便易行(其口号是“真正统计,确实简单”),并且取得了成功。但是如果你是高级用户,随着时间推移你会对它丧失兴趣。SPSS是制图方面的强手,由于缺少稳健和调查的方法,处理前沿的统计过程是其弱项。
界面展示:
Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件,以其简单易懂和功能强大受到初学者和高级用户的普遍欢迎,多用于医学,生物统计研究。在学术界广受欢迎。
Stata就如一个半自动相机,也就是说它把傻瓜菜单和命令编程结合了起来。它具有很强的程序语言功能,使用时可以每次只输入一个命令(适合初学者),也可以通过一个Stata程序一次输入多个命令(适合高级用户)。这样的话,即使发生错误,也较容易找出并加以修改。
Stata较好地实现了使用简便和功能强大两者的结合。尽管其简单易学,它在数据管理和许多前沿统计方法中的功能还是非常强大的。用户可以很容易的下载到别人已有的程序,也可以自己去编写,并使之与Stata紧密结合。
界面展示:
SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖。SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也正是基于此,它是最难掌握的软件之一,多用于企业工作之中。
SAS就如一台单反相机,你需要编写SAS程序来处理数据,进行分析。如果在一个程序中出现一个错误,找到并改正这个错误将是困难的。在所有的统计软件中,SAS有最强大的绘图工具,由SAS/Graph模块提供。然而,SAS/Graph模块的学习也是非常专业而复杂,图形的制作主要使用程序语言。SAS适合高级用户使用。它的学习过程是艰苦的,正所谓“五年入门,十年精通”,最初的阶段会使人灰心丧气。然而它还是以强大的数据管理和同时处理大批数据文件的功能,得到高级用户的青睐。
界面展示:
R是用于统计分析、绘图的语言和操作环境,属于GUN系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具,多用于论文,科研领域。
R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。因此R有很多最新的模型和检验方法,但是非常难自学,对英语的要求很高。R与SAS的区别在于,R是开放免费的,处理更灵活,同时对编程要求较高。
界面展示:
MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,功能最为强大的三款数学软件之一,多用于工科,数学领域。
Matlab能够解决各种各样的数学计算问题,,当然也可以进行数据处理和分析,可以说MATLAB能实现Eviews所能做到的事情,但两者的区别就在于,Eviews是专门的数据处理和分析软件,它的设计只为这一个目标服务;而MATLAB里数据处理只是其中一个功能,它在语法设计时并不能只考虑数据处理,而是要考虑全局,考虑到其他功能,因此其数据处理的功能用起来并不如Eviews这样有针对性的软件顺手,因此Matlab用于数学建模绝对是首选工具,而用于数据统计分析有点大材小用。
界面展示:
Amos适合进行协方差结构分析(Analysis of Covariance Structures),是一种处理结构方程模型(structural equation modeling,SEM)的软件。多用于学术研究。
Amos可以同时分析许多变量,是一个功能强大的统计分析工具。Amos以可视化、鼠标拖曳的方式来建立模型(路径图),表示变量之间的关系,从头到尾不必撰写程序指令,一气呵成,着实提高了数据分析的效率。此外,Amos还可让我们检验数据是否符合所建立的模型,以及进行模型探索(逐步建立最适当的模型)。SPSS是探索性统计分析软件,AMOS是验证性统计分析软件,两者经常结合使用。
界面展示:
LISREL (LInear Structural RELations)是被公认为最专业的结构方程模块( Structural Equation Modeling, 简称 SEM )分析工具,其共识性不容其它类似软件取代。
与Amos相比,Amos更容易上手,用起来有点麻烦,lisrel上手麻烦些,对于理解原理更方便些,并且上手之后更容易操作。
如果你是SEM新手,建议使用Amos,因为有防呆装置,一般不容易犯错,确定是知其然却不知其所以然。如果你对数学很有兴趣尤其对矩阵概念好的人,建议使用Lisrel,上手虽麻烦,但功能强大易操作。
界面展示:
对于这些常用的数据统计分析软件在不同的领域应用的综合评价如下:
学术界 :R > SAS > stata > SPSS > EXCEL ; 商业界:SAS > R > SPSS > stata > EXCEL
因此,对于软件的选择主要视自己涉入的领域而定。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21