“我们的利润率上升了,但销售额却没变,这是为什么?”
“某个业务的市场份额在下滑,到底是什么原因?”
“公司整体业绩稳定,但某些部门的表现差异巨大,哪些因素影响了它们?” ......
以上是企业经营过程中经常会遇到的问题,如何才能找到这些问题的答案,使用构成分析拆解数据可能会有奇效。
接下来,通过一个业务案例,带大家理解什么是构成分析以及如何使用它分析业务问题。
有一家食品经销商,主要销售休闲零食、饮料和主食。最近,财务部门发给经营者一份报告,显示过去三个月的销售额保持在 300 万元不变,但利润率却从 20% 上升到 25%。
这个数据让人不禁疑惑:销售额没变,利润率为什么会提升?是因为商品售价提高了,还是因为更高利润的品类卖得更多了?
经营者把这个问题抛给了数据分析师,数据分析师尝试用构成分析方法找出利润率上升的原因。
构成分析是通过分析整体中各部分所占的比例,了解各部分对整体的贡献程度。
构成分析的核心是:拆解整体数据,看清内部结构的变化。它关注的是各组成部分的占比,以及这些占比如何随时间或外部条件变化。
构成分析的关键不在于单看“总数”的变化,而是深入拆解各部分的贡献,从而发现真正的业务动因。
构成分析是CDA数据分析师一级的知识点,业务分析是CDA数据分析一级考核的重点,因为数据分析工作岗位就要基于业务分析,如果是销售或者业务负责的小伙伴,可以去重点学习。
PS. 新版教材p65所处位置:第二章数据分析方法 >第二节由基础分析范式引申出的六种分析方法 >第三小节 构成分析方法
如果想测试一下自己的构成分析的理解程度、业务分析了解程度。
为了搞清楚利润率变化的真正原因,数据分析师整理了过去三个月各品类的销售额:
先不看利润率,而是关注销售额的构成变化,会发现: · 休闲零食的销售占比从 33.3% 上升到 46.7% · 主食的销售占比从 50% 降到 33.3% · 饮料的占比略有提升
也就是说,虽然总销售额没变,但利润率较高的休闲零食销售占比上升,利润率较低的主食占比下降,这可能是利润率提高的关键因素。
为了更直观地理解销售构成的变化,使用百分比堆叠柱状图来展示各品类的占比变化。
从图表可以清晰看到: · 休闲零食占比不断上升,表明其销售额在整体收入中的比重越来越大。 · 主食占比下降,说明低利润率的产品销售占比减少。 · 饮料略有上升,但整体影响较小。
这个分析结果说明,利润率提升主要是因为高利润的品类占比增加了,拉高了整体利润率。这为食品经销商提供了一个重要的业务洞察:未来应该继续加强高利润品类的推广,而不是单纯追求总销售额的增长。
由此可见,构成分析可以帮助企业: 1. 精准拆解业务问题 识别业绩变化的真正驱动因素,而不是停留在表面的数据增长或下降。 2. 优化产品或用户结构 发现高价值产品或用户的比例变化,并调整营销策略。 3. 支持长期战略决策 帮助企业识别哪些业务或产品线值得重点投入。
构成分析是一个极其实用的分析方法,它不仅仅是简单的比例计算,而是一种深层次的数据解读手段。通过对数据的结构变化进行分析,可以找到影响业务增长或下滑的真正原因,避免单纯依赖总量指标做出错误决策。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04