协同过滤推荐算法的原理及实现
协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味相似的商品。协同过滤推荐算法分为两类,分别是基于用户的协同过滤算法(user-based collaboratIve filtering),和基于物品的协同过滤算法(item-based collaborative filtering)。简单的说就是:人以类聚,物以群分。下面我们将分别说明这两类推荐算法的原理和实现方法。
基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同商品或内容的态度和偏好程度计算用户之间的关系。在有相同喜好的用户间进行商品推荐。简单的说就是如果A,B两个用户都购买了x,y,z三本图书,并且给出了5星的好评。那么A和B就属于同一类用户。可以将A看过的图书w也推荐给用户B。
1.1寻找偏好相似的用户
我们模拟了5个用户对两件商品的评分,来说明如何通过用户对不同商品的态度和偏好寻找相似的用户。在示例中,5个用户分别对两件商品进行了评分。这里的分值可能表示真实的购买,也可以是用户对商品不同行为的量化指标。例如,浏览商品的次数,向朋友推荐商品,收藏,分享,或评论等等。这些行为都可以表示用户对商品的态度和偏好程度。
从表格中很难直观发现5个用户间的联系,我们将5个用户对两件商品的评分用散点图表示出来后,用户间的关系就很容易发现了。在散点图中,Y轴是商品1的评分,X轴是商品2的评分,通过用户的分布情况可以发现,A,C,D三个用户距离较近。用户A(3.3 6.5)和用户C(3.6 6.3),用户D(3.4 5.8)对两件商品的评分较为接近。而用户E和用户B则形成了另一个群体。散点图虽然直观,但无法投入实际的应用,也不能准确的度量用户间的关系。因此我们需要通过数字对用户的关系进行准确的度量,并依据这些关系完成商品的推荐。
1.2欧几里德距离评价
欧几里德距离评价是一个较为简单的用户关系评价方法。原理是通过计算两个用户在散点图中的距离来判断不同的用户是否有相同的偏好。以下是欧几里德距离评价的计算公式。
通过公式我们获得了5个用户相互间的欧几里德系数,也就是用户间的距离。系数越小表示两个用户间的距离越近,偏好也越是接近。不过这里有个问题,太小的数值可能无法准确的表现出不同用户间距离的差异,因此我们对求得的系数取倒数,使用户间的距离约接近,数值越大。在下面的表格中,可以发现,用户A&C用户A&D和用户C&D距离较近。同时用户B&E的距离也较为接近。与我们前面在散点图中看到的情况一致。
1.3皮尔逊相关度评价
皮尔逊相关度评价是另一种计算用户间关系的方法。他比欧几里德距离评价的计算要复杂一些,但对于评分数据不规范时皮尔逊相关度评价能够给出更好的结果。以下是一个多用户对多个商品进行评分的示例。这个示例比之前的两个商品的情况要复杂一些,但也更接近真实的情况。我们通过皮尔逊相关度评价对用户进行分组,并推荐商品。
1.4皮尔逊相关系数
皮尔逊相关系数的计算公式如下,结果是一个在-1与1之间的系数。该系数用来说明两个用户间联系的强弱程度。
相关系数的分类
通过计算5个用户对5件商品的评分我们获得了用户间的相似度数据。这里可以看到用户A&B,C&D,C&E和D&E之间相似度较高。下一步,我们可以依照相似度对用户进行商品推荐。
为用户C推荐商品
当我们需要对用户C推荐商品时,首先我们检查之前的相似度列表,发现用户C和用户D和E的相似度较高。换句话说这三个用户是一个群体,拥有相同的偏好。因此,我们可以对用户C推荐D和E的商品。但这里有一个问题。我们不能直接推荐前面商品1-商品5的商品。因为这这些商品用户C以及浏览或者购买过了。不能重复推荐。因此我们要推荐用户C还没有浏览或购买过的商品。
加权排序推荐
我们提取了用户D和用户E评价过的另外5件商品A—商品F的商品。并对不同商品的评分进行相似度加权。按加权后的结果对5件商品进行排序,然后推荐给用户C。这样,用户C就获得了与他偏好相似的用户D和E评价的商品。而在具体的推荐顺序和展示上我们依照用户D和用户E与用户C的相似度进行排序。
以上是基于用户的协同过滤算法。这个算法依靠用户的历史行为数据来计算相关度。也就是说必须要有一定的数据积累(冷启动问题)。对于新网站或数据量较少的网站,还有一种方法是基于物品的协同过滤算法。
基于物品的协同过滤算法(item-based collaborative filtering)
基于物品的协同过滤算法与基于用户的协同过滤算法很像,将商品和用户互换。通过计算不同用户对不同物品的评分获得物品间的关系。基于物品间的关系对用户进行相似物品的推荐。这里的评分代表用户对商品的态度和偏好。简单来说就是如果用户A同时购买了商品1和商品2,那么说明商品1和商品2的相关度较高。当用户B也购买了商品1时,可以推断他也有购买商品2的需求。
1.寻找相似的物品
表格中是两个用户对5件商品的评分。在这个表格中我们用户和商品的位置进行了互换,通过两个用户的评分来获得5件商品之间的相似度情况。单从表格中我们依然很难发现其中的联系,因此我们选择通过散点图进行展示。
在散点图中,X轴和Y轴分别是两个用户的评分。5件商品按照所获的评分值分布在散点图中。我们可以发现,商品1,3,4在用户A和B中有着近似的评分,说明这三件商品的相关度较高。而商品5和2则在另一个群体中。欧几里德距离评价
在基于物品的协同过滤算法中,我们依然可以使用欧几里德距离评价来计算不同商品间的距离和关系。以下是计算公式。
通过欧几里德系数可以发现,商品间的距离和关系与前面散点图中的表现一致,商品1,3,4距离较近关系密切。商品2和商品5距离较近。
皮尔逊相关度评价
我们选择使用皮尔逊相关度评价来计算多用户与多商品的关系计算。下面是5个用户对5件商品的评分表。我们通过这些评分计算出商品间的相关度。
皮尔逊相关度计算公式通过计算可以发现,商品1&2,商品3&4,商品3&5和商品4&5相似度较高。下一步我们可以依据这些商品间的相关度对用户进行商品推荐。
2,为用户提供基于相似物品的推荐
这里我们遇到了和基于用户进行商品推荐相同的问题,当需要对用户C基于商品3推荐商品时,需要一张新的商品与已有商品间的相似度列表。在前面的相似度计算中,商品3与商品4和商品5相似度较高,因此我们计算并获得了商品4,5与其他商品的相似度列表。
以下是通过计算获得的新商品与已有商品间的相似度数据。
加权排序推荐
这里是用户C已经购买过的商品4,5与新商品A,B,C直接的相似程度。我们将用户C对商品4,5的评分作为权重。对商品A,B,C进行加权排序。用户C评分较高并且与之相似度较高的商品被优先推荐。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11