协同过滤推荐算法的原理及实现
协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味相似的商品。协同过滤推荐算法分为两类,分别是基于用户的协同过滤算法(user-based collaboratIve filtering),和基于物品的协同过滤算法(item-based collaborative filtering)。简单的说就是:人以类聚,物以群分。下面我们将分别说明这两类推荐算法的原理和实现方法。
基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同商品或内容的态度和偏好程度计算用户之间的关系。在有相同喜好的用户间进行商品推荐。简单的说就是如果A,B两个用户都购买了x,y,z三本图书,并且给出了5星的好评。那么A和B就属于同一类用户。可以将A看过的图书w也推荐给用户B。
1.1寻找偏好相似的用户
我们模拟了5个用户对两件商品的评分,来说明如何通过用户对不同商品的态度和偏好寻找相似的用户。在示例中,5个用户分别对两件商品进行了评分。这里的分值可能表示真实的购买,也可以是用户对商品不同行为的量化指标。例如,浏览商品的次数,向朋友推荐商品,收藏,分享,或评论等等。这些行为都可以表示用户对商品的态度和偏好程度。
从表格中很难直观发现5个用户间的联系,我们将5个用户对两件商品的评分用散点图表示出来后,用户间的关系就很容易发现了。在散点图中,Y轴是商品1的评分,X轴是商品2的评分,通过用户的分布情况可以发现,A,C,D三个用户距离较近。用户A(3.3 6.5)和用户C(3.6 6.3),用户D(3.4 5.8)对两件商品的评分较为接近。而用户E和用户B则形成了另一个群体。散点图虽然直观,但无法投入实际的应用,也不能准确的度量用户间的关系。因此我们需要通过数字对用户的关系进行准确的度量,并依据这些关系完成商品的推荐。
1.2欧几里德距离评价
欧几里德距离评价是一个较为简单的用户关系评价方法。原理是通过计算两个用户在散点图中的距离来判断不同的用户是否有相同的偏好。以下是欧几里德距离评价的计算公式。
通过公式我们获得了5个用户相互间的欧几里德系数,也就是用户间的距离。系数越小表示两个用户间的距离越近,偏好也越是接近。不过这里有个问题,太小的数值可能无法准确的表现出不同用户间距离的差异,因此我们对求得的系数取倒数,使用户间的距离约接近,数值越大。在下面的表格中,可以发现,用户A&C用户A&D和用户C&D距离较近。同时用户B&E的距离也较为接近。与我们前面在散点图中看到的情况一致。
1.3皮尔逊相关度评价
皮尔逊相关度评价是另一种计算用户间关系的方法。他比欧几里德距离评价的计算要复杂一些,但对于评分数据不规范时皮尔逊相关度评价能够给出更好的结果。以下是一个多用户对多个商品进行评分的示例。这个示例比之前的两个商品的情况要复杂一些,但也更接近真实的情况。我们通过皮尔逊相关度评价对用户进行分组,并推荐商品。
1.4皮尔逊相关系数
皮尔逊相关系数的计算公式如下,结果是一个在-1与1之间的系数。该系数用来说明两个用户间联系的强弱程度。
相关系数的分类
通过计算5个用户对5件商品的评分我们获得了用户间的相似度数据。这里可以看到用户A&B,C&D,C&E和D&E之间相似度较高。下一步,我们可以依照相似度对用户进行商品推荐。
为用户C推荐商品
当我们需要对用户C推荐商品时,首先我们检查之前的相似度列表,发现用户C和用户D和E的相似度较高。换句话说这三个用户是一个群体,拥有相同的偏好。因此,我们可以对用户C推荐D和E的商品。但这里有一个问题。我们不能直接推荐前面商品1-商品5的商品。因为这这些商品用户C以及浏览或者购买过了。不能重复推荐。因此我们要推荐用户C还没有浏览或购买过的商品。
加权排序推荐
我们提取了用户D和用户E评价过的另外5件商品A—商品F的商品。并对不同商品的评分进行相似度加权。按加权后的结果对5件商品进行排序,然后推荐给用户C。这样,用户C就获得了与他偏好相似的用户D和E评价的商品。而在具体的推荐顺序和展示上我们依照用户D和用户E与用户C的相似度进行排序。
以上是基于用户的协同过滤算法。这个算法依靠用户的历史行为数据来计算相关度。也就是说必须要有一定的数据积累(冷启动问题)。对于新网站或数据量较少的网站,还有一种方法是基于物品的协同过滤算法。
基于物品的协同过滤算法(item-based collaborative filtering)
基于物品的协同过滤算法与基于用户的协同过滤算法很像,将商品和用户互换。通过计算不同用户对不同物品的评分获得物品间的关系。基于物品间的关系对用户进行相似物品的推荐。这里的评分代表用户对商品的态度和偏好。简单来说就是如果用户A同时购买了商品1和商品2,那么说明商品1和商品2的相关度较高。当用户B也购买了商品1时,可以推断他也有购买商品2的需求。
1.寻找相似的物品
表格中是两个用户对5件商品的评分。在这个表格中我们用户和商品的位置进行了互换,通过两个用户的评分来获得5件商品之间的相似度情况。单从表格中我们依然很难发现其中的联系,因此我们选择通过散点图进行展示。
在散点图中,X轴和Y轴分别是两个用户的评分。5件商品按照所获的评分值分布在散点图中。我们可以发现,商品1,3,4在用户A和B中有着近似的评分,说明这三件商品的相关度较高。而商品5和2则在另一个群体中。欧几里德距离评价
在基于物品的协同过滤算法中,我们依然可以使用欧几里德距离评价来计算不同商品间的距离和关系。以下是计算公式。
通过欧几里德系数可以发现,商品间的距离和关系与前面散点图中的表现一致,商品1,3,4距离较近关系密切。商品2和商品5距离较近。
皮尔逊相关度评价
我们选择使用皮尔逊相关度评价来计算多用户与多商品的关系计算。下面是5个用户对5件商品的评分表。我们通过这些评分计算出商品间的相关度。
皮尔逊相关度计算公式通过计算可以发现,商品1&2,商品3&4,商品3&5和商品4&5相似度较高。下一步我们可以依据这些商品间的相关度对用户进行商品推荐。
2,为用户提供基于相似物品的推荐
这里我们遇到了和基于用户进行商品推荐相同的问题,当需要对用户C基于商品3推荐商品时,需要一张新的商品与已有商品间的相似度列表。在前面的相似度计算中,商品3与商品4和商品5相似度较高,因此我们计算并获得了商品4,5与其他商品的相似度列表。
以下是通过计算获得的新商品与已有商品间的相似度数据。
加权排序推荐
这里是用户C已经购买过的商品4,5与新商品A,B,C直接的相似程度。我们将用户C对商品4,5的评分作为权重。对商品A,B,C进行加权排序。用户C评分较高并且与之相似度较高的商品被优先推荐。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16