数据分析师:数据过大将妨碍分析洞察
大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证明他们所想的结果的证据就越多”,他说。
大数据不仅仅在政治上应用,得到许多有趣的结论,在医学领域和地震预测,研究人员更希望利用大数据得出有趣的结论,而不是什么消息都没有。在真正的洞察中,大数据会带来许多“虚假的相关性”,那些看似互相关联的数据,其实只是干扰数据。
Nate Silver由此提出了四条建议,帮助使用者获得更好的洞察。
1.概率性思考而非绝对性化思考
正如调查中也会出现误差一样,不要惧怕预测中的不确定性,不确定性是重要的和科学的。如果忽略了事物的不确定性会导致严重后果。Nate Silver指出,在1997年时,国家气象局预测,Grand Forks的Red River的洪水水位是49英尺,因此镇上的防洪堤被设计成能承受51英尺的洪水。不幸的是,国家气象局在分析时并未将通过过去的数据得出的正负9英尺误差算进去,洪水达到了54英尺,Grand Forks被淹没。
现在国家气象局更加关注不确定性,这在预测中非常重要。
2.明确你的出发点,明白你的弱点
Nate Silver以一个性别歧视实验为例,一份女性名字和男性名字的简历,即使被调查人明确表示他没有性别歧视,但他潜意识更可能歧视女性的简历。而知道自己有性别歧视倾向的人会采取一定办法来抵消它的作用。
3.在得出结论前,了解数据所在的真实情况,理论联系实际。换句话说,能够准确预测San Diego的天气,并不代表可以同样准确预测Buffalo的天气。
就好比,预测一个稳定的经济环境比动荡、萧条的经济环境容易得多,这也解释了为什么许多预测者大都对经济衰退毫无准备,因为预测模型是基于1986-2006的数据创建的,那段时间经济异常稳定。
4.尝试和错误是有帮助的。
预测模型总是在错误中缓慢成长的,就像生活中的许多事情:“你应该怀疑奇迹般的结果”。
数据分析咨询请扫描二维码
# 数据分析师就业和发展前景 **市场需求与前景** - 全球数据分析市场预计每年将以超过10%的速度增长,为数据分析师提供巨大的 ...
2024-11-25统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22