使用SAS进行简单的聚类分析讲解
聚类分析的目的是把分类对象按一定的规则分成若干类,这些类不是事先给定的,而是根据数据的特征确定的,对类的数目和类的结构不必作任何的假定。在同一类里的这些对象在某种意义上倾向于彼此相似,而在不同类里的对象倾向于彼此不相似。
聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。Q型聚类是指对样品进行聚类,R型聚类分析是指对变量进行聚类。
聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。Q型聚类是指对样品进行聚类,R型聚类分析是指对变量进行聚类。
SAS中用于判别分析的过程主要有以下四个:
PROC CLUSTER 谱系聚类(Q型聚类分析)
PROC FASTCLUS K均值快速聚类,适用于大样本(Q型聚类分析)
PROC MODECLUS 非参数聚类(Q型聚类分析)
PROC VARCLUS 变量聚类(R型聚类分析)
1. 用PROC CLUSTER进行样品聚类分析(Q型聚类分析)
[例1]
试根据1997年信息基础设施的发展情况,对世界20个国家和地区进行聚类分析。描述信息基础设施的变量主要有六个:
Cal-每千人拥有电话线数;
Cellphone-每千户居民移动电话数;
Fee-高峰时期每三分钟国际电话成本;
Computer-每千人拥有的计算机数;
Mips-每千人中计算机功率(每秒百万指令);
Net-每千人互联网络户主数。
data cluster1;
infile datalines;
input Country $ Cal Cellphone Fee Computer Mips Net;
datalines;
美国 631.6 161.9 0.36 403 26073 35.34
日本 498.4 143.2 3.57 176 10223 6.26
德国 557.6 70.6 2.18 199 11571 9.48
瑞典 684.1 281.8 1.4 286 16660 29.39
瑞士 644 93.5 1.98 234 13621 22.68
丹麦 620.3 248.6 2.56 296 17210 21.84
新加坡 498.4 147.5 2.5 284 13578 13.49
中国台湾 469.4 56.1 3.68 119 6911 1.72
韩国 434.5 73 3.36 99 5795 1.66
巴西 81.9 16.3 3.02 19 876 0.52
智利 138.6 8.2 1.4 31 1411 1.28
墨西哥 92.2 9.8 2.61 31 1751 0.35
俄罗斯 174.9 5 5.12 24 1101 0.48
波兰 169 6.5 3.68 40 1796 1.45
匈牙利 262.2 49.4 2.66 68 3067 3.09
马来西亚 195.5 88.4 4.19 53 2734 1.25
泰国 78.6 27.8 4.95 22 1662 0.11
印度 13.6 0.3 6.28 2 101 0.01
法国 559.1 42.9 1.27 201 11702 4.76
英国 521.1 122.5 0.98 248 14461 11.91
;
run;
PROC CLUSTER DATA=cluster1 STANDARD METHOD=CENTROID CCC PSEUDO UT=TREE;
PROC TREE DATA=TREE HORIZONTAL SPACES=1;
RUN;
[说明]
METHOD=的选项可以为:
AVERAGE(平均法)
CENTROID(重心法)
COMPLETE(最长距离法)
DENSITY(非参数概率密度估计法)
EML(最大似然法)
FLEXIBLE(flexible-beta法)
MCQUITTY(Mcquitty的相似分析法)
MEDIAN(中位数法)
SINGLE(最短距离法)
TWOSTAGE(两阶段密度法)
WARD(Ward最小方差法)
STANDARD 对变量实施标准化。
CCC、PSEUDO 为了计算一些统计量用以判别全部样品究竟聚成几类较为合适。CCC要求打印聚类判别据的立方及在一致无效假设下近似期望值R2,PSEUDO要求打印伪F(标志PSF)和t2(标志PST2)统计量。当分类数目不同时,它们就有不同的取值,CCC和PSF出现峰值所对应的分类数较合适、PST2出现峰值的前一行所对应的分类数较合适。
OUT=TREE 产生名为TREE的输出数据集,它可被TREE过程用来输出聚类结果的树状图。HORIZONTAL要求将树状图水平放置,SPACES=1要求各样品之间的间隔为1。
[结果及其解释]
如果聚为3类,其聚类结果为:一类是信息基础设施最为发达的美国,一类是一些发达国家,其他的国家和地区聚为另外一类。
2. 用PROC FASTCLUS进行大样本的样品聚类分析(Q型聚类分析)
处理大样本时一般采用非分层聚类法(快速聚类法)。聚类的个数k可以根据需要事先指定。与分层聚类方法相比,非分层聚类方法不必确定距离矩阵,不必存储基本数据,因此适用于处理很大的数据集。
下面仍使用[例1]的数据,对PROC FASTCLUS加以说明:
PROC FASTCLUS DATA=cluster1 UT=result MAXC=3 CLUSTER=c;
RUN;
[说明]
MAXC=3 要求总共聚为3类
OUT=result 结果输出到数据集result
CLUSTER=c 分类标志的变量名c,其取值为1,2,3
[结果及其解释]
聚类结果为:一类是信息基础设施最为发达的美国,一类是一些发达国家,其他的国家和地区聚为另外一类。
3. 用 PROC VARCLUS 进行变量聚类分析(R型聚类分析)
[例 2] 对1996年全国30个省市自治区经济发展基本情况的八项指标作变量聚类分析:
X1:GDP
X2:居民消费水平
X3:固定资产投资
X4:职工平均工资
X5:货物周转量
X6:居民消费价格指数
X7:商品零售价格指数
X8:工业总产值
data cluster2;
infile datalines;
input Province $ X1-X8;
datalines;
北京 1394.89 2505 519.01 8144 373.9 117.3 112.6 843.43
天津 920.11 2720 345.46 6501 342.8 115.2 110.6 582.51
河北 2849.52 1258 704.87 4839 2033.3 115.2 115.8 1234.85
山西 1092.48 1250 290.9 4721 717.3 116.9 115.6 697.25
内蒙 832.88 1387 250.23 4134 781.7 117.5 116.8 419.39
辽宁 2793.37 2397 387.99 4911 1371.1 116.1 114 1840.55
吉林 1129.2 1872 320.45 4430 497.4 115.2 114.2 762.47
黑龙江 2014.53 2334 435.73 4145 824.8 116.1 114.3 1240.37
上海 2462.57 5343 996.48 9279 207.1 118.7 113 1642.95
江苏 5155.25 1926 1434.95 5943 1025.5 115.8 114.3 2026.64
浙江 3524.79 2249 1006.39 6619 754.4 116.6 113.5 916.59
安徽 2003.58 1254 474 4609 908.3 114.8 112.7 824.14
福建 2160.52 2320 553.97 5857 609.3 115.2 114.4 433.67
江西 1205.11 1182 282.84 4211 411.7 116.9 115.9 571.84
山东 5002.34 1527 1229.55 5145 1196.6 117.6 114.2 2207.69
河南 3002.74 1034 670.35 4344 1574.4 116.5 114.9 1367.92
湖北 2391.42 1527 571.86 4685 849 120 116.6 1220.72
湖南 2195.7 1408 422.61 4797 1011.8 119 115.5 843.83
广东 5381.72 2699 1639.83 8250 656.5 114 111.6 1396.35
广西 1606.15 1314 382.59 5105 556 118.4 116.4 554.97
海南 364.17 1814 198.35 5340 232.1 113.5 111.3 64.33
四川 3534 1261 822.54 4645 902.3 118.5 117 1431.81
贵州 630.07 942 150.84 4475 301.1 121.4 117.2 324.72
云南 1206.68 1261 334 5149 310.4 121.3 118.1 716.65
西藏 55.98 1110 17.87 7382 4.2 117.3 114.9 5.57
陕西 1000.03 1208 300.27 4396 500.9 119 117 600.98
甘肃 553.35 1007 114.81 5493 507 119.8 116.5 468.79
青海 165.31 1445 47.76 5753 61.6 118 116.3 105.8
宁夏 169.75 1355 61.98 5079 121.8 117.1 115.3 114.4
新疆 834.57 1469 376.95 5348 339 119.7 116.7 428.76
;
run;
PROC VARCLUS DATA=cluster2 CENTROID MAXC=3;
VAR x1-x8;
RUN;
[说明]
CENTROID 聚类方法为重心法,默认聚类方法为主成分法
MAXC=3 要求总共聚为3类
[结果及其解释]
聚类结果为:第一类变量主要反映了生产状况;第二类变量主要反映了消费状况,第三类变量主要反映了价格状况。
数据分析咨询请扫描二维码
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17