使用SAS进行简单的聚类分析讲解
聚类分析的目的是把分类对象按一定的规则分成若干类,这些类不是事先给定的,而是根据数据的特征确定的,对类的数目和类的结构不必作任何的假定。在同一类里的这些对象在某种意义上倾向于彼此相似,而在不同类里的对象倾向于彼此不相似。
聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。Q型聚类是指对样品进行聚类,R型聚类分析是指对变量进行聚类。
聚类分析根据分类对象不同分为Q型聚类分析和R型聚类分析。Q型聚类是指对样品进行聚类,R型聚类分析是指对变量进行聚类。
SAS中用于判别分析的过程主要有以下四个:
PROC CLUSTER 谱系聚类(Q型聚类分析)
PROC FASTCLUS K均值快速聚类,适用于大样本(Q型聚类分析)
PROC MODECLUS 非参数聚类(Q型聚类分析)
PROC VARCLUS 变量聚类(R型聚类分析)
1. 用PROC CLUSTER进行样品聚类分析(Q型聚类分析)
[例1]
试根据1997年信息基础设施的发展情况,对世界20个国家和地区进行聚类分析。描述信息基础设施的变量主要有六个:
Cal-每千人拥有电话线数;
Cellphone-每千户居民移动电话数;
Fee-高峰时期每三分钟国际电话成本;
Computer-每千人拥有的计算机数;
Mips-每千人中计算机功率(每秒百万指令);
Net-每千人互联网络户主数。
data cluster1;
infile datalines;
input Country $ Cal Cellphone Fee Computer Mips Net;
datalines;
美国 631.6 161.9 0.36 403 26073 35.34
日本 498.4 143.2 3.57 176 10223 6.26
德国 557.6 70.6 2.18 199 11571 9.48
瑞典 684.1 281.8 1.4 286 16660 29.39
瑞士 644 93.5 1.98 234 13621 22.68
丹麦 620.3 248.6 2.56 296 17210 21.84
新加坡 498.4 147.5 2.5 284 13578 13.49
中国台湾 469.4 56.1 3.68 119 6911 1.72
韩国 434.5 73 3.36 99 5795 1.66
巴西 81.9 16.3 3.02 19 876 0.52
智利 138.6 8.2 1.4 31 1411 1.28
墨西哥 92.2 9.8 2.61 31 1751 0.35
俄罗斯 174.9 5 5.12 24 1101 0.48
波兰 169 6.5 3.68 40 1796 1.45
匈牙利 262.2 49.4 2.66 68 3067 3.09
马来西亚 195.5 88.4 4.19 53 2734 1.25
泰国 78.6 27.8 4.95 22 1662 0.11
印度 13.6 0.3 6.28 2 101 0.01
法国 559.1 42.9 1.27 201 11702 4.76
英国 521.1 122.5 0.98 248 14461 11.91
;
run;
PROC CLUSTER DATA=cluster1 STANDARD METHOD=CENTROID CCC PSEUDO UT=TREE;
PROC TREE DATA=TREE HORIZONTAL SPACES=1;
RUN;
[说明]
METHOD=的选项可以为:
AVERAGE(平均法)
CENTROID(重心法)
COMPLETE(最长距离法)
DENSITY(非参数概率密度估计法)
EML(最大似然法)
FLEXIBLE(flexible-beta法)
MCQUITTY(Mcquitty的相似分析法)
MEDIAN(中位数法)
SINGLE(最短距离法)
TWOSTAGE(两阶段密度法)
WARD(Ward最小方差法)
STANDARD 对变量实施标准化。
CCC、PSEUDO 为了计算一些统计量用以判别全部样品究竟聚成几类较为合适。CCC要求打印聚类判别据的立方及在一致无效假设下近似期望值R2,PSEUDO要求打印伪F(标志PSF)和t2(标志PST2)统计量。当分类数目不同时,它们就有不同的取值,CCC和PSF出现峰值所对应的分类数较合适、PST2出现峰值的前一行所对应的分类数较合适。
OUT=TREE 产生名为TREE的输出数据集,它可被TREE过程用来输出聚类结果的树状图。HORIZONTAL要求将树状图水平放置,SPACES=1要求各样品之间的间隔为1。
[结果及其解释]
如果聚为3类,其聚类结果为:一类是信息基础设施最为发达的美国,一类是一些发达国家,其他的国家和地区聚为另外一类。
2. 用PROC FASTCLUS进行大样本的样品聚类分析(Q型聚类分析)
处理大样本时一般采用非分层聚类法(快速聚类法)。聚类的个数k可以根据需要事先指定。与分层聚类方法相比,非分层聚类方法不必确定距离矩阵,不必存储基本数据,因此适用于处理很大的数据集。
下面仍使用[例1]的数据,对PROC FASTCLUS加以说明:
PROC FASTCLUS DATA=cluster1 UT=result MAXC=3 CLUSTER=c;
RUN;
[说明]
MAXC=3 要求总共聚为3类
OUT=result 结果输出到数据集result
CLUSTER=c 分类标志的变量名c,其取值为1,2,3
[结果及其解释]
聚类结果为:一类是信息基础设施最为发达的美国,一类是一些发达国家,其他的国家和地区聚为另外一类。
3. 用 PROC VARCLUS 进行变量聚类分析(R型聚类分析)
[例 2] 对1996年全国30个省市自治区经济发展基本情况的八项指标作变量聚类分析:
X1:GDP
X2:居民消费水平
X3:固定资产投资
X4:职工平均工资
X5:货物周转量
X6:居民消费价格指数
X7:商品零售价格指数
X8:工业总产值
data cluster2;
infile datalines;
input Province $ X1-X8;
datalines;
北京 1394.89 2505 519.01 8144 373.9 117.3 112.6 843.43
天津 920.11 2720 345.46 6501 342.8 115.2 110.6 582.51
河北 2849.52 1258 704.87 4839 2033.3 115.2 115.8 1234.85
山西 1092.48 1250 290.9 4721 717.3 116.9 115.6 697.25
内蒙 832.88 1387 250.23 4134 781.7 117.5 116.8 419.39
辽宁 2793.37 2397 387.99 4911 1371.1 116.1 114 1840.55
吉林 1129.2 1872 320.45 4430 497.4 115.2 114.2 762.47
黑龙江 2014.53 2334 435.73 4145 824.8 116.1 114.3 1240.37
上海 2462.57 5343 996.48 9279 207.1 118.7 113 1642.95
江苏 5155.25 1926 1434.95 5943 1025.5 115.8 114.3 2026.64
浙江 3524.79 2249 1006.39 6619 754.4 116.6 113.5 916.59
安徽 2003.58 1254 474 4609 908.3 114.8 112.7 824.14
福建 2160.52 2320 553.97 5857 609.3 115.2 114.4 433.67
江西 1205.11 1182 282.84 4211 411.7 116.9 115.9 571.84
山东 5002.34 1527 1229.55 5145 1196.6 117.6 114.2 2207.69
河南 3002.74 1034 670.35 4344 1574.4 116.5 114.9 1367.92
湖北 2391.42 1527 571.86 4685 849 120 116.6 1220.72
湖南 2195.7 1408 422.61 4797 1011.8 119 115.5 843.83
广东 5381.72 2699 1639.83 8250 656.5 114 111.6 1396.35
广西 1606.15 1314 382.59 5105 556 118.4 116.4 554.97
海南 364.17 1814 198.35 5340 232.1 113.5 111.3 64.33
四川 3534 1261 822.54 4645 902.3 118.5 117 1431.81
贵州 630.07 942 150.84 4475 301.1 121.4 117.2 324.72
云南 1206.68 1261 334 5149 310.4 121.3 118.1 716.65
西藏 55.98 1110 17.87 7382 4.2 117.3 114.9 5.57
陕西 1000.03 1208 300.27 4396 500.9 119 117 600.98
甘肃 553.35 1007 114.81 5493 507 119.8 116.5 468.79
青海 165.31 1445 47.76 5753 61.6 118 116.3 105.8
宁夏 169.75 1355 61.98 5079 121.8 117.1 115.3 114.4
新疆 834.57 1469 376.95 5348 339 119.7 116.7 428.76
;
run;
PROC VARCLUS DATA=cluster2 CENTROID MAXC=3;
VAR x1-x8;
RUN;
[说明]
CENTROID 聚类方法为重心法,默认聚类方法为主成分法
MAXC=3 要求总共聚为3类
[结果及其解释]
聚类结果为:第一类变量主要反映了生产状况;第二类变量主要反映了消费状况,第三类变量主要反映了价格状况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13