花了无数时间来创建和进行一系列的活动,现在你终于准备好了要把结果展示给老板看。你已经精心排练了你的演示报告,对整个工作感觉好极了,除了那张展现结果表述得不是很清楚的幻灯片。
就算数据的其余部分很吸引人,你知道老板总是会不自觉地把注意力集中到那张表述不太清楚的幻灯片上。虽然你可能不喜欢那样,但是我们认为任何活动最重要的部分是在所有工作都做完了才到来的。换句话说,那张图是十分重要的。
当然,做一张简单的图表很容易,但是要让你的下次汇报水平上一个台阶,并展现出你所做工作的真正影响力,你需要非常关注细节。为了帮助你把下一次演示做得更好,我们列出了10个快速便捷的报告微调方法作为入门。 具体来说,下面的每个例子,我们将让你体会到利用Excel和HubSpot进行报告微调的效果。
1)改变图表类型
下面这个例子,表明如何选择不同的图表让你的报告变得清晰。
之后:
虽然两张图显示的都是相同的数据——某时段MQLs的产生量,根据来源区分——第二张图是一个区域图,让观众能够把不同时期的MQL流的变动看得更清楚。
2)输出以先前表现为基准的图
让我们假设你刚刚出版了一本非常棒的电子书。让你高兴的是,你的潜在客户不断攀升。太棒了!但是,你的老板总是问尖锐的问题:潜在客户增长是好事,但是否能带来不一样的效果?
你如何来更新你的报告,给老板展示你的潜在客户数据和正常数据的对比?在你的报告中额外增加一系列的数据,显示一下跟以前相同时间段指标的比较情况。
在下面的例子中,你可以看到随着时间的推移,有稳定的增长值——带有和不带有以前月份的数据。
之前:
之后:
增加额外的内容提供了更好的快照来比较你的当前和之前的工作表现。
3)改变数据的次序
就算全部正确的数据都已经在你的图表里,关键的一点是把数据用有逻辑性和直观性的方式排列。可以按字母顺序、次序或按价值排列。
在下面的例子里,我们把销售周期的速度绘制成一张柱状图,根据最初的销售来源进行细分。根据这个报告,我们试图了解哪个来源带来最快变现的潜在客户,以及哪个来源潜在客户变现最慢。
之前:
之后:
看到不同了吗?如果数据是随机排列的,会很难发现战略上的关键点。
4)显示数据标记。
如果你是在绘制一段时间内的趋势图,加上标记会非常有用,因为它能清晰展示出数据间隔之间的逐步变化。在下面的例子中,我们要绘制MQL在特定某一周的增长,把客户的不同来源划分成9个种类。添加标记有助于分清不同日期之间的数据变化,从而更容易得出到底哪种渠道增加客户的效果更好。
之前:
之后:
5)展示累计数据
如果你想要展示累计的增长,就用累计后的数据来绘图。在下面的例子中,第一张图表的信息告诉我们的可能是“我们在这个时间段的后半部分新增了更多的MQL ”。第二张图, MQL总量增加的变化更为明显:总共新增了超过1500个 MQL ,而且随着时间的推移新增的数量加速增长。
之前:
之后:
6)删去多余的数字
不是所有的数据都要放在图上。删掉那些性质不明确的或者跟你要解答的问题不相关的数据。
只要记得把握好分寸来清理报告即可。不要因为有些数据不能展示出你想讲的故事而删除它们。
之前:
之后:
7)画出目标线
原始数据很好,但它有时候并不能说明一个完整的故事。比方说,你这个月生成了500 MQL 。干得不错……但是那又能说明什么呢?跟你之前所定的目标相比如何?添加一条目标线,可以帮助你的团队更加明确你们的表现跟期望之间的关系。
之前:
之后:
8)堆叠数据
过多的数据可能给人招架不住的感觉 。可视化的堆叠能更容易看出不同类别间的总体趋势,分组图更容易比较同一个类别的不同的单个数据。根据你想要回答的问题,选择最合适的方式。
假设你在绘制每个月的客户增长图,根据客户所在的不同行业来分类。你的目标是比较单个月的不同行业的客户增长。你可能会遇到一个问题:4月份我们的高等教育或者生物科技的客户是不是增长得更多?
在一个堆叠图表中,很难对某个月的不同行业的数据进行比较 。在这种情况下,最好使用一个分组条形图,用来表示在某个时间段内的单个值的大小更为明显。另一方面,如果你想把重点放在展示某个行业的客户增长对总体增长的贡献,一个堆叠图表能把汇总数据表示更清楚。
之前:
之后:
9)调整所用的配色方案
我们不一定都是艺术家。但我们中的大多数人都可以判断出某个配色方案的使用是否恰当。如果你展示一组数据,有几个选项,就选择一个配色方案,能够明确辨别出不同的选项。 否则,数据的呈现将毫无意义。
之前:
之后:
专业提示:用不同的颜色来区分报告里的不同类别。例如,你可能用绿色表示有关交易或机会,而用蓝色或黄色来为与市场相关的填色。
10)调换坐标轴
调换你的X轴和Y轴可以使你的图表展示一个完全不同的故事。在下面的例子中,我们要用图表来展示客户的初始来源和客户生命周期的阶段数据。
在“之前”这个截图上,一个重点可能是绝大多数的客户都是通过线下渠道产生的。然而,很难看出线下渠道发展的客户在每个客户生命周期的比例。
调换图表的X轴变量,使我们能够更深入地分析我们已有的内容。 “之后”的这幅图更加清楚地显示了离线渠道在开发新客户上所起的巨大作用。尽管这两个图表都展示出有操作性的重点,但是更重要的是明确你最初的问题。很多时候,调整X轴变量后的,你会找到更好的答案。
之前:
之后:
之前:
之后:
现在你已经知道怎么让你的数据吸引眼球了,并且能让你的报表达到一个更高的水平。衷心希望你以后再也不会把一个难以理解的图表呈现给你的老板了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29