卓越数据科学家的四大特征
对于那些希望在大数据时代掘金的公司来说,成功的关键是找到数据科学家, 并围绕数据科学家搭建团队。如今优秀的数据科学家一将难求, 而卓越的数据科学家更是灿若晨星。 如何才能发现真正改变企业乃至行业未来的伟大的数据科学家呢?
Thomas Redman在哈佛商业评论博客中发表了一篇关于区分好的数据科学家和伟大的数据科学家的文章, IT经理网编译如下。
好的数据科学家能够帮助你从浩如烟海的数据中发现你无法发现的规律, 而伟大的数据科学家可以发现一个更大的世界, 他们采用数据, 但不完全依赖于数据。
在过去的几年里, 我有幸能够和上百个好的统计学家, 分析师和数据科学家合作。 其中有一些可以称之为“伟大”。 我发现, 这些伟大的数据科学家们都具备四大特征, 是那些好数据科学家所不具备的。
好奇心
最近有很多人都在提到好奇心是数据科学家的必要素质。 这没错, 和任何领域的科学家一样, 数据科学家也需要具备基本的好奇心。
而伟大的数据科学家将好奇心发展到极致。 他们热衷于研究这个世界, 他们会为了发现事物的规律和原因而兴奋不已。他们从数据中去发现事物的规律和原因。 面对数据 他们会从数据的不同角度来进行研究, 进而去发现别人所看不到的规律。
一定的数学水平
伟大的数据科学家能够发现别人看不到的东西。 举个例子来说, 我以前在一个投行碰到过一个实习生。 他现在已经是一个大的媒体集团的首席数据科学家。 在他第二天上班的时候, 老板给了他一叠报告。 他简单扫了一眼报告, 发现了一个关于回报率的计算错误。 他有花了一个小时验证了这个错误并算出正确答案。
重要的是, 几百人都看过这份报告, 而这是一个顶级的投资银行, 肯定有一些相当好的分析师也看过这个报告, 而只有他看出了这个错误。
在描述现实世界的时候, 数学是一种非常有效的语言(爱因斯坦说是“难以置信的有效)。 伟大的数据科学家对这种语言具备一种天生的感觉, 这些甚至是一些好的数据科学家所做不到的。
坚持
伟大的数据科学家在很多方面都能表现出坚持的特点。 前面说的实习生, 看了一眼发现了错误, 花了一个钟头就验证出来了。 实际上数据分析很少能这么快。 就像BT的CIO Jeff Hooper在贝尔实验室时有句名言:“数据不会轻易地把秘密告诉你, 你需要把秘密从中榨出来。”
这说的一点没错。 即便在最好的情况下, 数据也常常是不完整甚至存在错误的。 而大部分数据最后都和你要解决的问题无关。 盯着这些“噪音”数据工作是一项单调无趣的工作。 好的数据科学家可能会转而研究别的问题, 而伟大的数据科学家会坚持继续研究。
数据科学家的另外一个坚持就是他们会坚持表述自己的发现。 这一点, 在大的企业中, 甚至可能比“噪音”数据更加会令人沮丧。 还是拿前面那个实习生的例子。 他工作第二天就发现了这个错误, 而他需要整个实习期都要来“捍卫”他这个发现。 出了错误的部门肯定会死不承认, 而别的部门就想看笑话。 数据科学家夹在其中, 需要足够的坚持才能把正确的观点传达出来。
技术能力
掌握最新的数据分析方法很重要, 更重要的是, 要有具备对统计学的知识和热情。 简单的说, 数据分析包括两类:描述型分析和预测型分析。 描述性分析已经很难了。 而预测型分析则更加棘手, 它充满了不确定性。
伟大的数据科学家能够驾驭不确定性。 他们知道预测的哪些部分是基于真实的观察, 哪些因素是基于假设的。 他们知道要使预测有效, 哪些条件必须满足。 哪些因素会导致预测失效, 哪些未知因素可能会导致预测错误等等。 他们会量化风险。 他们会设计一些小型实验来验证或者推翻某些假设。
总之, 这不是一种“数学技能”, 而是长期在复杂的工作中,经过了无数成功和失败后培养出来的一种能力。
伟大的数据科学家非常稀少, 他们就是数据科学界的迈克尔-乔丹, 朱莉娅-罗伯茨, 或者帕瓦罗蒂。 如果企业需要认真地把宝压在从大数据和数据分析上, 那么你需要找到一个到两个这样的人, 给他们配备团队, 营造好的环境, 让他们按照自己的方式去工作。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20