数据分析一定要避免辛普森悖论
辛普森悖论是一种统计现象,实验群体由具有不同统计特性的子群体组成,观察到的现象是总体水平可能与单个子群体的水平不相关。换句话说,辛普森悖论是在一个数据集中的变量被分组之后,他们之间的相关性可能会发生改变。
辛普森悖论在数据集方面看上去广泛,而且没有被分解成有意义的片段。辛普森悖论是研究中被忽略的“混淆变量”结果。混淆变量本质上是一个与核心研究无关的变量,它随着自变量的改变而改变。
例如,一个移动应用程序的用户群,其中1万人使用Android设备,5千人使用iOS设备。用户的总体转化率是5%,iOS设备的转化率是4%,Android设备的转化率是5.5%:
假设相同的货币化(也就是Android用户和iOS用户在游戏中花的钱一样多),资源有限的产品经理可能根据这些数据会做出一些极端的决定,也许会优先考虑安卓功能的开发,甚至干脆取消iOS项目。
然而当数据按照设备再次细分,用户群的不同的情况如下:
现在发现iOS平板的转换率比Android平板高一点,iOS手机的转换率同样比Android手机高。如果看到了这一点,产品经理可能会对未来的产品做一系列不同的决策。
在这种情况下,设备类型是一个混淆变量:当数据按照设备类型细分,子群体具有完全无法相比的统计特性。
iOS能在设备转化方面打败Android,但是在整体水平上却输给Android的原因是,每个平台的设备类型不同:平板的转化率比手机的转化率高,在这个用户群中,iOS平板占iOS设备的比例(30%)低于Android平板所占的比例(80%),尽管Android平板上的转化率比IOS低。 把数据混合到一起就变成一个很大的问题,去比较两组与完全不同的属性的东西 —— 就像是去比较苹果和橙子的区别一样。
混淆变量经常用于分析免费增值产品,有以下几个原因:
1. 基数大小。免费增值产品因为固有的低转化率需要大量用户基数来产生收入。这些庞大的用户通常由来自世界各地,来自不同地区,并且使用设备广泛。这种多样性的呈现致使比较后的平均值几乎没有任何意义;
2. LTV曲线。免费增值产品受益于长尾货币化曲线。为了娱乐而消费的使用者,消费的指标可能很接近,因此可以作为分界的界限。
3. 大部分用户不会消费。先前提到的免费增值产品的固有低转化率 作为一个基本的区分两类用户而存在 :付费和非付费。基于这个原因,把非付费用户群作为一个整体的任何指标都是有缺陷的,因为它把所有指标都倾斜到了绝大多数永远不会付费的用户(这就是为什么最低可行的指标模型包括ARPU和ARPPU)
避免辛普森悖论的关键——关于用户基础的结论,不反映现实的不同类型的用户与产品的交互——是明智地应用维度分析。用户细分在数据分析中是非常重要的,特别是对免费增值产品,“普通用户”不仅不存在,而且他的特征作为一个警示,避免开发人员被误导。当一个用户群以广泛多元化的特征存在时,通用数据是无用的。
当考到产品开发路线图时,用户分类是至关重要的:如果数据分析表明哪些特性由于确定非常有价值而优先开发,那么它同时也决定了应该给哪些人做推销以增长用户群。也正因此,从聚类分析得出似是而非的结论,不仅会造成开发错误功能,也会把更多错误的用户加入到用户群中。
为了避免这种情况,用于优先功能开发的基本维度(“过滤器”,或用户特性),应该在用户分类方面建立粗糙集。对于移动产品,最基础的设置一般包括:
位置(国家)
设备(平台、外形,设备型号)
采集源;
早期行为线索( 如盈利/ 参与里程碑);
加入日期(用于控制季节性)
对于一些收购渠道(如Facebook),其他人口统计数据点,如年龄,性别等可能也是重点。
用这些维度进行分析比先前引用的“iOS和Android”的例子提供了更为可靠的见解。最终分析的目标是为真正使用它的人改善产品。如果这个分析在一个错误的前提下进行,那么用户的真正问题并不会得到解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10