大数据改变着传统行业的营销模式
依托云计算,运用大数据,互联网正演绎一场大变革。从互联网企业做电商重塑传统零售业,到冲击金融业,再到如今逐渐渗透到各行各业,大数据正改变着传统行业的经营模式。
而到移动互联网时代,面对网民浏览习惯日趋多屏终端化的趋势,当前数字广告业内已经普遍认识到大数据技术应用到精准、效果类广告策略中的价值,并加深了对大数据技术的应用。
在此条件下,大数据将会带来哪些改变?其难点又在何处?为此,上证报记者专访了2013互联网大会指定大数据营销平台AdTime的CEO付海鹏及CTO雷永华。
上海证券报:大数据除了对商业模式的改变外,在营销方面将带来怎么样的变化?
付海鹏:过去传统的营销模式是通过大量广告投入来吸引消费者,传播面广,但缺乏精准定位。大数据时代使得这一模式有所改变,通过对消费者行为的预判,我们更容易理解消费者的喜好偏好。这使得大数据下的营销对传统营销形成挑战和升级。
上海证券报:这些挑战与升级,对于诸如传统媒体将带来什么影响?会不会像大数据对部分行业如金融那样产生一定的冲击?
付海鹏:大数据使得新媒体与传统媒体的界限越来越模糊,事实上将为传统媒体带来新的商机。我们提供的是帮助广告主实现多屏互动的全新互联网投放模式。过去谷歌、百度等互联网公司基于搜索的广告模式冲击了传统媒体,在我们看来,传统媒体如纸媒拥有很多读者,纸媒一样可以成为一种屏幕的载体。
雷永华:这么来理解或许更容易,比如近期我们和某家报纸进行的合作便基于大数据的舆情分析,该报拥有大量上市公司客户,这些客户需要及时应对负面报道等各类情况,传统媒体只拥有客户,而我们却可以帮助他们更贴近客户,这便是大数据给传统媒体带来的新商机。
上海证券报:那么,你们公司是如何具体运用大数据开拓新型营销模式的?又是如何获取数据的?
雷永华:我们还提供用户行为的分析、竞争产品的分析,均是基于与有数据的公司合作,如目前我们与广电网等各大运营商合作。作为运营商,他们拥有大量数据,但运营商最为迫切的是,这些数据如何转换成流量?我们通过他们提供的数据分析流量,并为它们变现流量。竞争产品分析也恰恰切合了企业了解竞争对手的需求,这些都是大数据下的创新模式,而传统的营销企业并不具备。此外,我们还可以基于大量数据提供各类品牌营销。
现在广告行业对大数据技术的应用还不够,要在技术上进行深耕,数据挖掘是难点,最后才是借助大数据去创新广告模式。
上海证券报:你们公司在数据挖掘上遇到何种困难?又取得了什么突破?
付海鹏:AdTime将不同网络的基础数据进行关联分析,形成针对不同行业的维度关系,并通过对不同行业特有的数据行为以及终端覆盖的特点,为主流行业客户提供有针对性的多屏广告投放策略,并在投放过程中提供多种丰富的广告形式。
其实在互联网时代,数据的获取已经变得相对较为容易,研究分析挖掘成为至关重要的课题。
举例来说,对于传统企业而言,拥有数据,却不知如何分析,比如分析偏好等普通数据已成为一道门槛,虽然我们在这一点上已经实现,并成功吸引了很多广告客户,但难点在于,我们还期望更精准的定位,如哪个用户在什么时间,正在使用哪种屏幕,是PC屏幕,还是电视屏幕,还是手机屏幕?真正做到及时推送这一点目前还处于探索之中。
雷永华:我们这种及时推送叫做“时间营销”,就是通过大数据技术手段及时响应每一个网民当前的需求,让网民在决定购买的“黄金时间”内及时接收到商品广告,进而提升广告被关注的程度和广告的成功转化率。时间营销包含了多屏营销,因为你需要知道什么样的客户何时在使用哪类客户端,这对于大数据的分析是挑战也是机遇,因为用户普遍反感野蛮式推送广告,那么时间营销就成了用户体验的必然选择。
付海鹏:这是可以通过点击率来判断的,我们投放的广告,客户打开的链接都有我们ID,通过这个ID便可以知道是否是由我们的广告而变成点击率。若用户注册进而消费了,那也很容易就知道了,这也是大数据时代营销的最大魅力,客户可以量化效果。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26