小白学数据分析--流失分析设计
前段时间说过一些关于玩家生命周期的问题,其实那些有点大,有点虚,从宏观的角度了解我们此时此刻正在做的分析是属于那一部分,哪一个体系的,说实话,这是为了建立一种意识而要做的工作,玩家生命周期价值源于电信行业的客户生命周期管理和PLC(产品生命周期)的解读和应用,限于本人水平和能力因素,不够深刻,全面,在此请各位谅解,以后的内容会逐步深入到这个体系之下的很多细节的问题探讨,今天就和大家简单说说流失率。
说到流失率,我们可以考察,可以分析,可以利用的点实在是太多了,这里我也不可能把所有的东西都覆盖,仅从几个指标来说说,至于其他的关联分析部分需要大家自己来看和分析(不要陷入一个误区,那就是我说的这些就是流失率的全部)。
流失率在网游产品的运营过程中,是非常重要的一块,可惜很多时候我们做的并不够细致和仔细。流失分析其实是一个系列的过程,不仅仅是找到流失的原因(这是我们做的最多的部分),还有其他的流失管理部分,而这里大家可以看出来这是一个过程。
流失特征提取:准确的说这是玩家流失的特征的提取,哪些玩家有流失的倾向,比如玩家处在何等级可能流失加剧,在线时长达到多少可能会有游戏疲倦加剧流失,与那部分系统交互较多的玩家易流失,那个角色的玩家群体流失倾向明显。这个阶段我们做的很多工作室一种预警性质的工作,通过对数据的处理分析得到玩家可能流失的特征。
流失原因分析:流失原因的分析首先我们可以从前期提取特征的方面下手分析,先把提取的流失特征进行整合分析,归结一下是否是玩家流失的原因。如果流失原因不是我们前期提取的预警流失的特征,且玩家依旧流失,我们就需要找到新的流失因素,并把这些因素归结到流失特征提取环节,这样流失特征会积攒大量的流失预警的提取数据点。
再者,尽管我们进行流失特征提取并采取防流失的
手段,但是可能效果和受众并不是很理想,此时依旧会有比较大的流失,因此我们还要分析和评估挽留策略的效果。
挽留策略制定:其实挽留策略的制定在流失特征提取时就已经制定了,在玩家非流失阶段就做好流失的预防措施,这是防流失最好的办法,当已经发生流失了,某种意义上说是我们制定的策略效果不佳或者未考虑的因素促使流失的上升,挽留策略是我们提升人气,降低流失的关键之举。但是不意味着好的策略就一定会有好的结果。
挽留策略实施:挽留策略制定好了,还需要整个运营团队,营销团队,程序,策划的共同配合执行和实施,才能达到良好的效果,而这也不是绝对的,往往我们会受制于某些因素的影响,比如实施难度,排期等等。
挽留策略评估:如同我们所做的一个活动一样,我们需要有针对型的进行评估和分析,目的在于不断的修正我们的策略,不断适应我们游戏玩家和产品的发展需求。今天就说怎么来判断流失用户,流失用户的标准是什么?
流失的定义之说
在对于流失问题上,每个企业和产品会根据自己的需求来定义流失率,流失率定义的分类方法有很多,确定什么是流失用户对于完成我们的流失分析很重要。流失分析主要是从玩家属性和玩家与产品的关系两面入手。玩家属性多是玩家的物理属性,而我们要分析的是玩家与产品的关系,在这方面我们从玩家的整体在游戏的留存情况下手。
在解释以上的术语之前,我们约定以上的用户分类分析是以月为度量单位展开的分析。并且以下的分析是以历史玩家和登录时间间隔为维度进行的定义和分析研究。关于流失的分析还可以从新玩家和登录时间间隔考察、历史玩家和付费与否、新登玩家和付费与否,不断将几种标准组合,就会进一步提取分析流失人群的特征。此外,还有比如定向的研究付费玩家的购买流失分析等等。
历史用户:如上述,是在上个月之前就已经成为游戏的玩家。而今天我们所要进行的用户定义是历史用户,再此前提下进行以下的流失定义和分析。如果用一个伪甘特图表示如下所示:
留存用户:历史登录过游戏,且上个月和本月均登录游戏的玩家,这类玩家是留存玩家,伪甘特图如下:
沉默用户:也叫做轻度流失用户,一般的网游产品定义的流失就到此层次就OK了,但是这只是轻度流失,沉默用户是历史登录过游戏,上个月登录但是本月未登录游戏的玩家。伪甘特图如下:
流失用户:这里其实是重度流失,历史上有过登录,但是上个月和本月均未登录游戏的玩家,伪甘特图如下:
回流用户:历史有过登录行为,上个月未登录,但是本月登录游戏的玩家,伪甘特图如下所示:
植物用户:所谓植物用户主要分两类,一类是历史用户在上月和本月都没有登录的情况下,在下个月玩家回归游戏,此类用户称之为唤醒用户,如同植物人最后苏醒一样,该类用户的回归完成了一个闭环的过程。
所谓的闭环是玩家从唤醒状态最终回归到留存或者回流的状态(按照定义是这样)。此外还有一类用户就是没有被唤醒的植物用户,这一类就基本上从游戏中流失掉了。
以上是几类不同程度流失用户的详细解释和描述,这几类用户的细分,可能有些细致了,然而精准的把握这几类用户将有助于帮助我们寻找玩家的流失特征,从而在不同的时期,针对不同的玩家制定相应的挽留策略,出发点就是从每一种过渡状态尽可能降低玩家的转化,因为每当用户向下一个状态转化,就意味着流失的加剧和损失上升。
今天的流失细分主要是从老玩家的角度出发的,有一组数据说明了我们细分用户,挽留老用户的必要性。一个企业争取一个新客户的成本是保留老客户成本的5倍;客户流失率降低5%,利润增加25%-85%;一个满意的客户会带来8笔潜在的生意,一个不满意的客户则可能影响25个人的购买意愿,忽略对老用户的关注,大多数企业会在5年内流失一半的顾客。尽管没有针对网友行业的数据,不过就此看出来,挽留策略是企业盈利的保证和核心,而挽留策略从哪里来针对谁,这就是流失分析的要做的事。
最后回归到开始的话题上,如果我们要做一次活动的评估,究竟该怎么下手?这里我觉得有一方面通过对以上的人群进行分析,能够看到一些我们想要的。我们把人群找出来了,下面通过一系列的具体分析找出一次活动该如何分析,该如何制定下次活动,有针对的,精准的定位人群,精准营销。
活动对象:通过聚类分析、异常分析、RFM分析、决策树、神经网络、logistics等方法提炼不同人群的特征,进而有的放矢;
如何营销:不同的人群,不同的购买习惯,可以使用关联分析、序列分析;
时间营销:挖掘整个玩家的在时间维度上变化和行为,生命周期挖掘、时间序列、回归分析;
如何评估:T、卡方检验、对比分析,环比同比。
以上为流失分析的一种设计方式,如之前所提到的,流失分析还可以从其他维度开展,但是尽管这样设计了,实际操作时还要结合很多的方法和其他设计进行分析,比如对于每类人群进行聚类分析,寻找与产品 等有关的信息。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10