热线电话:13121318867

登录
首页精彩阅读数据分析职位对电子商务行业的重要性
数据分析职位对电子商务行业的重要性
2016-08-19
收藏

数据分析职位对电子商务行业的重要性

就电子商务行业来说,数据分析职位在企业内部是非常重要,营销管理、客户管理等环节都需要应用到数据分析的结果,利用大数据分来来发现企业内部的不足,营销手段的不足、客户体验的不足等等,利用数据挖掘来了解客户的内在需求。那么要达到这些效果,在电子商务行业大数据分析主要是采用哪些算法以及模型?

第一、RFM模型

通过了解在网站有过购买行为的客户,通过分析客户的购买行为来描述客户的价值,就是时间、频率、金额等几个方面继续进行客户区分,通过这个模型进行的数据分析,网站可以区别自己各个级别的会员、铁牌会员、铜牌会员还是金牌会员就是这样区分出来的。同时对于一些长时间都没有购买行为的客户,可以对他们进行一些针对性的营销活动,激活这些休眠客户。使用RFM模型只要根据三个不同的变量进行分组就可以实现会员区分。

第二、Apriori算法

这个应该是属于数据挖掘工具的一种,属于关联性分析的一种,就可以看出哪两种商品是有关联性的,例如衣服和裤子等搭配穿法,通过Apriori算法,就可以得出两个商品之间的关联系,这可以确定商品的陈列等因素,也可以对客户的购买经历进行组套销售。

第三、Spss分析

主要是针对营销活动中的精细化分析,让针对客户的营销活动更加有针对性,也可以对数据库当中的客户购买过的商品进行分析,例如哪些客户同时购买过这些商品,特别是针对现在电子商务的细分越来越精细,在精细化营销上做好分析,对于企业的营销效果有很大的好处。

第四、网站分析

访问量、页面停留等等数据,都是重要的流量指标,进行网站数据分析的时候,流量以及转化率也是衡量工作情况的方式之一,对通过这个指标来了解其他数据的变化也至关重要。

在电子商务行业竞争越来越大的今天,也是一个花钱的时代,花出去的钱能不能得到收益,是企业最关注的,投资回报率是大家都要考虑的,因此数据分析职位在电子商务行业的位置也越来越重要。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询