大数据是影视行业的利器还是障碍
以前是有什么电影,观众就看什么电影。如今是根据大数据中显示的观众喜欢看什么,再拍什么。观众的活动数据影响了作品的生产。大数据,指的是利用新型数据处理模式,采集、存储、管理、分析海量信息。大数据服务于决策,能够提升决策能力。
收视率数据、票房数据、明星粉丝数据、网友兴趣关注数据……都会影响影视行业的发展动态。所以,不难理解为什么现在IP火爆,演技生涩的小花、鲜肉满天飞,剧情空洞的玄幻剧霸屏,以及套路满满的青春片充斥影院。在IP、颜值、玄幻、青春片扎堆之际,其实是大数据在掌控。
然而从观众对《小时代》、《老九门》、《微微一笑很倾城》、《致青春》的评价来看,这些作品并没有达到他们的期望,满足他们的情感。相反,过度依赖粉丝支持、颜值的作品,引起大多数人的失望和反感。
可以说,目前大数据对影视行业来说,并没有发挥出其优势和潜力。
唯点击量还是看实力?
大数据,是一个有着更为科学、精细的系统,能够实现满足用户定制化需求。中国影视行业的投资者、制片方也乐意通过大数据分析及时抓取用户的喜好倾向,提高作品市场回报率。但是在实际操作中,也有一些误区。在是参照舆情,还是看实际情况这一问题中,大多数人走向了唯点击率是首。
翻开一个个电视剧、综艺节目、电影,演员、明星在其中充当了流量担当。陈学冬、王俊凯、黄轩、杨幂、唐嫣、吴亦凡、刘亦菲、彭于晏……这一个个名字背后都是人气指数。导演、制片方、投资方花重金选择拥有庞大粉丝基础的明星,离飘红的票房、收视率更近了。如今,粉丝数量、明星话题度已经影响了整个影视大环境。
但是这种依靠点击量的影视作品也陷入一个怪圈,卖座并不叫好,甚至引发负面影响。一味重视流量、颜值的制作理念已经与观众的审美需求背道而驰。人们常常发现,一个偶像明星演了一个剧的同时也毁了一部剧。吴亦凡出演《致青春2》,人气吸引了粉丝买单。但是,夸张的表演,让人从头到尾看不到演技的存在,也拉低了整部电影的品质。这样的情形在2016年暑期表现尤为突出。因此原本可以产生国产爆款的暑期档,最后不见一匹黑马。
是跟风还是深度挖掘用户需求?
在众多影视作品通过大数据的分析,走向颜值、人气第一的制作理念时,是跟风,还是另辟蹊径?其实大数据一般都有一定的滞后性。大数据是对过去存在的数据采集,从而形成对过去形势的认知。人们可以根据大数据对影视行业进行布局。如果抓住了一部分群体的需求空白,有的放矢,制作产品,吸引他们的注意,很容易成功。但是当这种需求已被大范围满足时,原来的大数据就失去了作用。
在大数据的指导下,影视作品的生产方式是先锁定观众,选择他们喜欢看的小说做剧本,然后请一些他们喜欢的明星、导演进行拍摄,再到他们社交网站上经常提到的景点取景,用人气歌手配乐,最后再到观众喜欢看的综艺节目上宣传。这样生产出来的产品,在热点活跃的时候,很吸人眼球。但是,当热点一消失,就会因艺术性缺乏而不被接受。
大数据是线性存在的,随着时间轴的发展,随时随地都在发生着微妙的变化。因此,作为制作者,在依赖大数据的同时,也需要挖掘用户的深度需求。当大众对颜值、流量的追求被海量生产的作品满足时,就应该转向颜值、流量的对立面——质量。制作方,可以在精准的定位与艺术性之间找到一个平衡点,让影视作品不仅仅是一个商品。
大数据应和创意同行
大数据的出现,对传统影视行业来说,是机遇,也是挑战。以前,生产者不考虑用户的需求,海量生产作品,同质化严重,很难满足个性各异的用户。有了大数据之后,用户能够在众多产品中找到自己喜欢的作品。这对于普通用户来说,是一种福音,也是一种改变。大数据部分解决了用户需求与作品创作之间的矛盾,也成功塑造了一些商业价值高的产品。相对于传统的市场调研,大数据能够实现分析的高度智能化和有效匹配。大数据分析能够及时、迅速地进行分析,节约市场调研的成本。
当然,大数据并不是影视行业发展的决定性力量。一部作品的成功,取决于多种因素、多个力量的相互配合。
《纸片屋》的编剧约翰 曼凯维奇认为,《纸牌屋》的成功并不是由大数据决定的。大数据的作用在《纸牌屋》的成功中被夸大了,至少作为编剧,他没有关注网络大数据。他和其他四个编剧,集中精力讲好一个故事,做到专业且有深度。因此,可以说《纸片屋》的产生源于大数据,但是其成功不限于大数据,而是更多地依靠导演、演员、创意、讲故事的手法等。 归根结底,一部影视作品的成功,充满了很多偶然性,并不是大数据能够决定的。
总之,在利用大数据开发影视作品时,需要回归作品本身。选择一个观众都喜欢看的题材,需要下功夫想出一个与众不同的讲故事的方式,用专业、有深度的剧情留住目标观众。否则,就会出现热乎乎的数据产生一个冷冰冰的票房成绩现象。毕竟,受众在网络上发表的意见、留下的浏览痕迹以及展示的喜好都只是表象。在这些表象之下,只有看到有价值的东西,才能实现对大数据技术成熟、完美的应用。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13