大数据创业,绕开BAT,找准红利方可成功
随着大数据时代的到来,其中产业链的红利也将逐渐呈现,催生了诸多相关的创业项目。笔者以一家定义为大数据加工、分析、流通的创业公司“云见”为例,探讨下数据在流通过程中增值的可能性。
大数据的红利在哪?
处在大数据最上游的是数据产生端,其中最有代表性的是BAT这样的企业。与数据生存者对应的另一端是需求端,即服务主体,同样是包括政府、机构、企业、个人。而处在中间的则是数据的处理加工商,如云见这类公司。
那么,红利在哪里呢?首先,数据生产端红利已尽。BAT因为自有数据资源可以自嗨,比如百度有“百度迁徙”、“百度精算”;阿里有 “阿里云”、“支付宝-花呗”;腾讯有 “腾讯云分析”,BAT自产自销模式代表了大部分拥有数据源的玩家。
那么剩下的红利就集中在了中间部分,其中有两种模式:
模式一:与业务场景结合,做产业类平台,如同花顺、恒生电子。
模式二:数据的再加工利用,即从运营商、互联网公司获取原始数据信息来进行分析,再提供给用户关于价值和趋势的信息以换取价值。
相比于模式一的深耕,模式二因为进入门槛、资源要求度都相对较低,所以云见选择以这种形式进行切入。
既然类似云见这样的小微企业,先天没有数据源的优势,那么如何让数据在流通过程中增值呢?
让数据在流通过程中增值的方法
(1)降低数据来源的成本
最普遍的方法包括通过第三方购买数据、爬虫爬回数据、合作方授权数据、免费的开放数据。数据获取中肯定要付出人力、资金成本,所以解决数据源是大数据创业公司首要面临的问题。
目前行业做得较创新的是“数据堂”,这家作为挂牌新三板的第一个大数据资源公司,采用“众包”形式,由服务企业提出需求,数据堂直接通过众客堂采集数据。同时,众客堂用户也是处理数据的方式,可甄别数据真伪和有效性。
当然,相比于成熟型的数据公司,云见还未具备这样的数据采集实力,所以其倾向于用合作授权数据的形式,低成本获得独家数据源。
(2)着眼于未来的数据加工
数据加工包括整理合并、优化、排错等方面,数据本身庞杂无章,精炼后的数据能够发掘其中的规律性而进行精准应用。当然,这只是数据加工的通用价值,大数据创业公司关键要解决数据价值深化或兑现的问题。
云见做出两个选择:
与垂直领域对接发现价值
因为消费升级、移动互联网的人口红利消失,那些大规模的对受众社会属性不加区分的水平产品很难生产。在大数据时代,通用型信息的价值正减小,任何拥有数据加工能力的人都可说出用户画像,但针对垂直领域的数据价值需求则需深耕才能解决。
预测未来比看见现在更重要
云见从成立之初就专注在“算法”上,用模式识别的方式形成自己的经验库以预测用户的未来行为,区别于竞争对手赚解决方案服务费的方式,这也符合其技术驱动型团队的特点——更看中“稳”而不是“快”。
(3)用“mall”的形式
作为大数据元老级公司的“数据堂”15年推出了国内第一家网上数据商城“Data Mall”,数据商城的形式最大化地提高了数据交易效率,简单理解就是在通用的入口,用户可以进行重复消费;同时,平台方通过商城获得接入用户的机会,用户成为“传感器”——作为流量入口,又将数据反馈至商城上,担任消费端和供给端的双重角色。
云见也在筹建这样的“轻模式”,除了上述提及的优势,考虑到基于用户需求的非标准化特性,API接口(应用程序编程接口)本身是很难进行标准化的,所以“mall”的呈现方式在一定程度上解决了API形式上的标准化,同时,“mall”改变了传统打包服务的模式,减少在销售、推广、人力上的成本。
当然,大数据创业的成功还有一部分因素是依赖在大势上。
(4)政策上的大势
2015年7月,国务院办公厅发布《关于运用大数据加强对市场主体服务和监管的若干意见》,这是顺应大数据时代潮流,运用现代信息技术加强政府公共服务和市场监管,推动简政放权和政府职能转变的重要政策文件。
文件表示将充分认识运用大数据加强对市场主体服务和监管的重要性、运用大数据提高为市场主体服务水平、运用大数据加强和改进市场监管、推进政府和社会信息资源开放共享、提高政府运用大数据的能力和积极培育和发展社会化征信服务等。
(5)行业上的机会
目前较有代表性的大数据公司是“数据堂”和“聚合数据”,共同特点是拥有如BAT量级的大B用户。但相当部分的小B企业以及政府决策、公共服务、金融、电信等领域对数据存在需求,再加上数据供给端也出现了多元化的现状,所以大数据行业本身很难做到一家独大,类似于云见这样较小型的数据处理公司还是有机会在其中馋食大数据的红利。
创业的机会在哪里
池静若认为现在大数据产业链才开始发展,大众都把目光聚焦在大数据的两端:一是谁拥有这些数据,二是这些数据到底如何使用。但仅仅在两端是不能解决大数据问题的。
大数据产业的大量机会出现在中间环节,包括采集、聚合、机器学习加工后的数据通过智能管道合法流入到用户的手里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13