数据可视化6大技巧
越来越多的媒体开始接受网络数据,数据可视化便成为不可或缺的一部分。用一个个有效且有逻辑关联性的图形来显示数据、传递信息,能够让人们更加了解事物的本质。虽然现在已经有很多关于数据可视化的教程,但有关数据可视化的学术研究仍然较少。新闻记者更倾向于关注Edward Tufte等人的流行书籍,忽视了学术研究本身。事实上,关于数据可视化的学术文献才是记者新闻工作过程中的探照灯。
关于数据可视化,我们能从学术研究中学到这6点:
1、结合图标来增加说服力
康奈尔大学的研究人员发现,仅在文章中增加一张图表,就能使文章的说服力大大增强。对于同一篇文章,高达97%的参与者更认同那个含有图表的文章所传达的信息。就像某些科学性较强的新闻,它的内容相对来说枯燥且专业性过强,普通的读者一般很难了解新闻想要传达的信息,这时如果记者把数据进行可视化,清晰的数据图表将对读者产生更大的影响。
2、使用饼图、条形图或泡泡,使数据显示得更加清晰
威廉·克利夫兰(William Cleveland)和罗伯特·麦吉尔(Robert McGill)是第一个用科学的结论支持常识性说法并批判现有图表的研究者。1984年,克利夫兰和麦吉尔指导人们根据图表的类型,准确地“解码”各种视觉属性的数据。比 如一个圆的面积、酒吧的体积等等。他们研究所得到的制作图形编码的结论是这样的:
3、超大图表≠最优图表
研究发现,图表的尺寸将在一定程度上影响信息的传播效果。图表越短,读者的关注度越少。然而实际上,随着图表精确度的增加,信息的传播效率得到了更快地提升。研究表明,在页面布局方面,设计师必须考虑制作一个合理大小的图表,这样才能让信息传播的准确性及效率最大化。大图表可能会给读者带来更多的视觉冲击,实则在提高读者信息理解度方面收效甚微。
4、视觉打败记忆:请按空间顺序排列,而非时间
塔玛拉·芒泽(Tamara Munzer)是哥伦比亚大学的计算机科学教授,她建议设计师制作一些让读者更容易理解的可视图。这就意味着要把现有数据按照空间顺序进行比较,而非按时间顺序。用她的话说就是“视觉打败记忆”,因为我们的大脑更倾向于对两个项目进行比较,而非记住一个接一个的动画或视频。她不是首推按空间排列顺序的第一人,但芒泽认为这是一个对数据可视化的好建议。具体而言就是,要对比各项数据,懂得揭示其中的变化和差异,而非简简单单地呈现一个动画。
5、有创意,才难忘!
哈佛大学和麻省理工学院的一只团队正在研究各种形式的大数据可视化。他们试图使可视图更加令人难忘,而非提高图表的有效性和准确性。在收集、分类,并研究了5000多个可视图后,他们认为那些图案多样、颜色鲜艳、视觉密度更高、含有易辨认人物头像的可视图更容易被读者记住。
他们还发现,非传统的图表更令人难忘。同时,这个团队也承认,他们的研究只考虑了可视图的呈现,而忽略了对实际数据的诠释。尽管存在这些限制,但他们的研究也具体、明显地表明,要设计一个能产生持续影响力的可视图,新颖的创意、绚丽的色彩和丰富的图案演示是不可或缺的三要素。
6、真的需要夸大你的图表和插图吗?
最先倡导数据可视化的专家塔夫特提出了一个极具争议性的观点,即太多的图案使可视图的阅读性大大降低。来自加拿大的研究人员质疑这个想法,并且把过多美化的图表和简约的图表做了对比。他们认为,“华丽”的图表实际上并没有降低数据的可读性与准确性。此外,这项研究的参与者发现,人们两个星期后甚至会重新阅读“华丽”的图表。
所以,可视图到底应不应该装饰插图?极简主义者认为,演示图表可以让人们重新思考当下,并批判以往的研究方法。如今,对于修饰与未修饰图表所形成的效果,各种观点仍旧没有达成明确的共识,它留下的艺术价值远甚于科学价值。
关于数据可视化的实践跨越了科学与艺术两个领域。然而,从学术结论转移到实际操作并非易事。最近,《纽约时报》可视图编辑者迈克·博斯托克(Mike Bostock)警告Reddit论坛道:“学术界的危险在于它很容易使一切变得过于抽象。”把抽象转为具体,是一项很值得去做的事情。学术界可以提供一些制作可视图的指导,同时,编辑部也应该时刻留意着象牙塔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10