数据科学与火箭科学如何将人类送上火星
在最近的CNN专栏中,奥巴马总统再次证实,美国将不遗余力地实行将载人航天器送上火星的任务。如果你觉得自己面临的数据科学难题太有挑战性,那你应该想一想,用挖掘数据的方式来探究火星远征对健康的影响,是多难的一件事。
在太空中生活几年对于宇航员的肌肉张力和肺活量有多大影响?对他们来说减轻体重的安全限度是多少?载人飞船中的二氧化碳含量应有多少?每一件太空服需要配置多少传感器用来计算宇航员的关节灵活性?
想要把人类送到“前无古人”的那些地方,有大量的变量需要纳入考虑,NASA也正刻苦研究未来的火星计划所涉及的健康和安全风险。这些风险影响着制定计划时所需要作出的一系列决策——从预估的潜在机组人员数量,到设备工程、任务后勤以及燃油储备,等等,因而对这些风险的明确了解可谓是重中之重。
虽然代价高昂,但NASA从开始就很明白,他们工作的重点不在于开发一个完美的分析模型,而在于打造一个数据科学程序,使决策者在回答一些不断变动的问题时,能用到分析学的办法。但是如果你想要学习NASA的分析方式,不一定非得跟火箭科学打交道。对于那些想要从事大数据分析,或困于大数据分析的组织来说,这里有从NASA的项目中总结的几个核心要点:
别小题大做
简而言之,数据科学根本没火箭科学那么难(不信的话你看我在那做了什么)。是的,分析大数据是有挑战性,而且根据你所期望获取的见解不同,方法也可能随之变动,但是完全没必要把事情搞得太复杂,想要得到解决方案远远用不着那么复杂。
很多组织时常循环往复试着把数据搬回来分析,其实他们更应该把分析方法带进数据里去。既然称之为大数据,自然是不可能把它搬来搬去的,就算做到了,也得历经艰难险阻。这也就是分散式存储和像Hadoop那样的处理框架存在的原因——云数据的可扩展性,比起硬盘里的数据可高太多了。
对于火星计划来说,涉及到很多层次的数据需要考虑,从曾经完成过太空任务的宇航员(比如说斯考特凯丽),身上取得的健康数据,到无人航天的测试研究,再到模拟太空环境下的研究,其中之一就是休斯顿市约翰逊太空中心的人类探索研究模拟计划(HERA)。
把所有数据归整到同一个地方是关键的第一步。为此,NASA使用了高级协作式分析方法和数据共享平台对数据进行分析,这一平台的开发者是洛克希德马丁公司和几个分析伙伴,比如勇攀科技。因为省去了下载数据到单独的分析环境中的步骤,研究者们现在可以把更多的时间和精力花在提问题、解决问题,然后更好地规划火星计划上面。
发射只是开始
火箭的成功发射只是持续数年的火星远征的第一步。基于从前的经验,NASA已经做好了遇到并解决无数挑战的准备。对于数据分析项目来说亦是如此,光是部署好了模型并不意味着项目大功告成,实际上那些基于实时基础上不断完善和迭代的模型才是最有价值的分析初创。
像科学研究方法一样,充分利用分析结果需要不断地做实验检测,从失败中获取教训,然后接着进行检测。NASA想要的是快速查询供其使用的大量数据,然后把结论传回可以立足于先前结果的新模型中。所以对他们来说,数据科学程序就像一个钟摆,向前的摇摆着重于从研究者那里快速获得结论,而向后的摇摆着重于测量、评估结果、改进模型以及再次向前摇摆。
用现有的数据进行工作,而不是你所期望的数据。
在数据组有缺陷的时候,快速轻巧地改善模型的能力尤其宝贵。(而且说实话,有完全没有缺陷的数据组这回事吗?)。
对NASA来说,最大的数据挑战就是宇航员的样本库太小了,只有三千多人被NASA认定为宇航员。想要取得推断,研究者们得把从这个小样本中取得的数据挖个底朝天才行。
举例来说,基于历时五个月的太空旅行对一个35岁,120磅重的女性的影响,两年的太空旅行对一个32岁,123磅重的会有什么影响呢?对30岁、118磅的呢?此外,到现在还没有宇航员实际踏上过这个红色星球,所以对在火星上居住会有什么健康影响,相关数据还处于空白阶段(马特达蒙不算哦)。
但是NASA从去过月球的宇航员或者在空间站待过一年的宇航员那里可以知道些什么呢?如果把处于模拟太空环境的测试体的数据放入预测模型,会发生什么呢?有了支持模型配置与完善的分析工具,各组织可以试着用各种方式从数据中提取结论来做出更准确的预测,甚至在缺失关键信息的情况下也可以做到。
打破隐喻黑箱
为了火星计划,NASA不仅仅押上了纳税人的数十亿美金,还押上了宇航员的性命,为了科学与探索,这些宇航员不惜担起健康和生命安全的风险。
对于这样的一个计划,关键在于让不是数据科学博士的那些分析工作者(比如说健康研究者、设备工程师和其他策划航行任务的人员)也能够自力完成构建和展开查询、使用数据的任务。这要求商业和IT股东们的通力合作,易用易改的建模工具以及将深入了解转达给需要的人的能力。这也是NASA选择一个这样的协作分析平台的原因,这一平台可以将输出结果直接延伸至火星计划的科学家和决策者所使用的系统和应用中。
大量复杂的数据组给任何想要从事分析部署的组织带来了挑战,但是NASA驾驭数据进行了最困难的行程规划——也就是火星远征,证明了这些挑战绝不是不可逾越的。只要有了正确的工具,以及最为重要的,一致周详的解决方式,数据科学根本不像火箭科学那么吓人。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16