大数据分析:从数字中“掘金”
在对今年美国总统大选结果的各种预测中,“义乌做旗子的预测美国大选结果”异军突起,让人们见识到了大数据的神奇力量。眼下,在我们生活周围环绕着各种大数据,但很多人对大数据还是一知半解。有人甚至觉得,大数据分析是计算机系、统计系学生才学的技术课程,商学院的学生如果学习大数据分析,肯定不如他们做得好。事实真是这样的吗?
数据本身是中性的
如果手头有海量的信用卡消费数据,可以用来做什么?通常的想法是,这些数据可以给消费者的信用打分,判断是否提高其信用额度。但你有没有想过,可以用这些数据来炒股赚钱呢?
美国第一资本投资国际集团曾经发生过这样的事情:2名分析师利用公司掌握的信用卡消费数据分析了至少170家上市零售公司的销售情况,据此预测这些公司的销售额。然后,他们在这些上市公司公布季度财务报表之前购入看涨期权或者看跌期权,进而获取巨额利益。3年内,他们在股市上的投资收益率达到惊人的1800%。当然,这一做法是违法的,属于利用内部信息进行交易,最终被美国证券交易委员会逮住了。
有意思的是,美国证券交易委员会识别违法交易也借助于此。他们用到的分析方法有:超常收益识别,看投资人的投资收益率是否远比采用类似投资策略的投资人的收益率高。链接分析,从手机通话记录中找一个个社交圈,看异常投资收益是否和社交圈里的信息流动有关;还可以从交易记录中找小圈子,如买卖是不是在一个小团伙里面进行,合谋炒高股价。关联分析,通过交易行为的相关性找出内幕交易合谋者或者人头账户。行为分析,看投资人的交易行为是否发生异常变化,或者是否和投资经验不符,如明明是菜鸟注册的账户,操作行为却十分老到,止盈止损风险控制什么都懂,等等。
这些例子表明,大数据本身是中性的,关键在于如何使用。如果缺乏商业洞察力,大数据可能就只是一堆数字。
商业洞察力是“艺”
如果说大数据分析是艺术的话,那么数据分析技术是“术”、商业洞察力才是“艺”。好的商业洞察力,能够帮助企业超越大数据分析的技术局限。
保险业是重度使用大数据的行业。但如果有人伪造信息并且故意制造车祸来骗保怎么办?可以通过增加数据并构建一个欺诈识别模型来应付,也可以采取人工调查来识别,但都需要付出巨大成本。
德国有家初创企业通过商业模式创新的方式,解决了这个大数据分析难以解决的问题。在这个名为P2P保险的商业模式中,投保人向亲朋好友发出建立保险互助关系的邀请,一起交保费并参与到保险互助网络中。若保险产品到期时没有出险,消费者可以获得最高40%的保费返还。若出现小额赔付,则由亲友所缴保费的资金池进行赔付。超出这个资金池的赔付,由企业承担。
这个商业模式解决了大数据分析难以解决的防欺诈问题,原因在于亲友之间互相了解,都不愿意把自己和骗子绑在一起,所以骗子找不到亲友和他一起投保。同时,保险欺诈不容易被保险公司发现,却很容易被亲友识破,且欺骗亲友比欺骗保险公司的道德压力更大。另外,自己的小额损失让亲友代为承担,通常比让保险公司来服务更加令人感到尴尬,所以人们不会随便报损。
两个常犯的错误
在应用数据挖掘结果过程中,有两个常犯的错误需要引起注意。
第一,误以为相关性代表因果关系,实际上两者不能等同。管理者应该根据数据挖掘结果继续深挖因果关系,才能找到更有价值的商业洞见。例如,发现来自移动端的用户转换率明显比来自电脑端的高,就加大对移动端广告投放,也许并不是唯一途径。继续深挖这个现象的因果关系,可能会发现来自移动端的用户其实早就是公司的老客户,本来就喜欢公司的产品,所以转换率高。而来自电脑端的用户基本是新客户,因而在电脑端投放广告可能效果更好。因此,利用相关性来帮助商业决策需要不时检查。
第二,误以为基于数据的预测是平稳的。商业发展往往不是连续的,尤其是在有颠覆性创新的情况下。例如,传统出租车公司可以在一些平稳趋势假设下预测客流量,从而决定应该购买多少新车。但当滴滴等网络专车进场,以往的这些模型和预测就会通通失效。因此,不可过分依赖历史数据的分析结果,尤其在战略决策时,商业洞察力起的作用更大。
总之,在容易获取海量数据的时代,大数据分析是帮助企业决策的重要工具,但管理者的商业洞察力和智慧仍是不可缺少的重要因素。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22