SPSS分析技术:因子分析;调查问卷的效度分析
在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况,这几个不同的问题都指向课件的制作,它们最后的得分情况也将表现出强烈的相关关系。再比如不同的运动项目的成绩,看似没有关系,但是其实它们用到的核心力量是会有重叠的,铅球和铁饼都会用手部肌肉等。
上面这些例子都有一个特点,就是问卷调查的不同题目得分之间,体育运动的不同项目成绩之间会有交叉和重叠的地方,可以通过因子分析,将这些交叉和重叠的信息提取出来,形成新的变量,称为因子,用这些因子来反映不同项目,不同题目,不同变量之间的内部关系。因子分析可以看作是主成分分析的推广。因子分析通过从众多相关联的变量中抽取少量公因子,起到了减少变量数量的作用,所以和主成分分析一样,也是一种降维方法。
因子分析是问卷等数据收集手段的结构效度分析的主要方法,所谓结构效度是指测量工具对测量对象的测量能力。问卷的效度是指问卷能够测量出某种理论特质或概念的程度,也就是实际的问卷测量得分能够解释理论特质或概念的程度。从其实际应用的视角看,因子分析产生的结果是归纳出测量变量对潜在属性的描述,从而实现了对测量性质准确性和测量结果正确性的描述,因此,因子分析能够检验问卷效度。
因子分析和主成分分析
主成分分析只是因子分析的一个提取方法,因子分析除了可以用主成分分析提取公因子以外,还能使用其它的方法,SPSS提供的因子分析方法有:
因子分析的数学模型
现在有k个样本,每个样本由n个变量来描述,这n个变量之间有较强的关联性。如果每个变量都可以用m个(公因子)解释,则可以表示为:
因子分析模型需要满足以下几个条件
2、公因子的均值为0;
3、公因子与特殊因子之间不相关;
4、公因子之间互不相关;
5、特殊因子之间也不相关;
对因子分析中抽取的公因子,需要观察它们在哪些变量上的载荷较大,并据此说明该公因子的实际含义(公因子命名)。然而,得到初始公因子模型后,因子载荷矩阵往往比较复杂,不利于因子的解释。这时必须通过因子旋转,使得载荷矩阵中的各元素数值向0和1两个极端分化,同时保持同一行中各元素的公因子方差不变。这样,通过因子旋转,各变量在因子上的载荷更加明显,有利于对各公共因子给出更加明确合理的解释。旋转的方法有正交旋转法、斜交旋转法,最大方差法等,比较常用的是最大方差法。
与主成分分析一样,在抽取公因子以后,还可以用回归估计等方法求出因子得分的数学模型,将各公因子表示成变量的线性形式,并进一步计算出因子得分,从而解决公因子不可测度的问题,实现对样本进行综合评价的目的。因子得分函数为:
因子分析中的旋转
在因子分析中,理想的情况是某一主因子仅在某几个观测变量上有较强的载荷,而在其它观测变量上的载荷值很低,这样就可以直接使用这几个观测变量的综合语义来描述该主因子。然而,在某些情况下,主因子在各个观测变量上的载荷是均衡的,很难直接从观测变量中抽取出主因子的语义。在这种情况下,为了使观测变量对主因子的描述更为集中,可以通过坐标轴的空间变换来改变主因子,使得每个主因子都可以对应各自的一组描述变量,这种变换使几何空间上的数据点更加贴近新的坐标轴,从而使观测变量因不同的主因子而被区分开。这就是旋转变换的概念。
对于因子分析中的载荷矩阵,在经过旋转变换后,如果主因子之间仍保持不相关的关系,则称之为正交变换;如果允许主因子之间存在一定的相关性,则称之为斜交变换。
范例分析
为提高公司员工的工作积极性,某公司人事部对公司的员工做了一次工作积极性影响因素的问卷调查,问卷包括40个问题。
总共回收了752份问卷,对这些数据进行因子分析,分析影响员工积极性的因素有哪些,并分析该问卷的结构效度的优劣。
分析步骤
1、选择菜单【分析】-【降维】-【因子分析】命令,打开因子分析对话框,进行下图操作;打开【描述】选项,将原始分析结果,KMO和Bartlett球形度检验选中。
2、点击【抽取】,打开下图的对话框,进行如下选择;
3、打开【旋转】,【得分】和【选项】按钮,打开对话框,进行如下选择;点击【确定】,输出结果。
结果解读
1、KMO和Bartlette的检验
由于KMO值为0.944,表示原始变量之间相关性很强,非常适合做因子分析;Bartlett检验的 Sig值为0.000,同样说明数据适合做因子分析。
2、总方差解释
只有前8个公因子的特征值大于1,所以系统默认提取前8个新变量为公因子。从表格中还可以知道,前8个公因子对总方差的解释量为65.345%,低于精确解80%以上的总方差解释量要求,但是在社科领域,60%以上的解释量,还是可以作为参考信息进行下一步解释的。
3、碎石图
从碎石图也可以看出,从8号公因子以后,斜率就非常的平缓了。
4、成分矩阵
所有成分矩阵都是按照因子系数大小排列的,并只显示绝对值大于0.35的系数。从表格中可知,第一个因子在40个变量中的38个都有载荷,这样不便于对提取的因子进行解释,因此,通过因子旋转,使因子载荷两极化。
5、旋转后因子载荷矩阵
坐标旋转以后,表格就变成了上面的形式,这样不同问题的因子归属就明确了,这时,就可以根据因子在哪些变量上有较高的载荷而对因子进行命名。例如,因子1反映的是工作伙伴和团队成员的合作,因此可以命名为团队合作;因子2反映上级经理管理水平;因子3反映的是公司提供的学习培训机会。
从上表还可以看出,该问卷通过因子旋转共获得8个因子。这些因子中,最少的包含3个问题,最多的包含6个问题,且在这些问题上的因子载荷介于0.403到0.830之间,都大于0.35的最小可接受值,这说明该问卷的结构效度很高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30