SPSS分析技术:因子分析;调查问卷的效度分析
在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况,这几个不同的问题都指向课件的制作,它们最后的得分情况也将表现出强烈的相关关系。再比如不同的运动项目的成绩,看似没有关系,但是其实它们用到的核心力量是会有重叠的,铅球和铁饼都会用手部肌肉等。
上面这些例子都有一个特点,就是问卷调查的不同题目得分之间,体育运动的不同项目成绩之间会有交叉和重叠的地方,可以通过因子分析,将这些交叉和重叠的信息提取出来,形成新的变量,称为因子,用这些因子来反映不同项目,不同题目,不同变量之间的内部关系。因子分析可以看作是主成分分析的推广。因子分析通过从众多相关联的变量中抽取少量公因子,起到了减少变量数量的作用,所以和主成分分析一样,也是一种降维方法。
因子分析是问卷等数据收集手段的结构效度分析的主要方法,所谓结构效度是指测量工具对测量对象的测量能力。问卷的效度是指问卷能够测量出某种理论特质或概念的程度,也就是实际的问卷测量得分能够解释理论特质或概念的程度。从其实际应用的视角看,因子分析产生的结果是归纳出测量变量对潜在属性的描述,从而实现了对测量性质准确性和测量结果正确性的描述,因此,因子分析能够检验问卷效度。
因子分析和主成分分析
主成分分析只是因子分析的一个提取方法,因子分析除了可以用主成分分析提取公因子以外,还能使用其它的方法,SPSS提供的因子分析方法有:
因子分析的数学模型
现在有k个样本,每个样本由n个变量来描述,这n个变量之间有较强的关联性。如果每个变量都可以用m个(公因子)解释,则可以表示为:
因子分析模型需要满足以下几个条件
2、公因子的均值为0;
3、公因子与特殊因子之间不相关;
4、公因子之间互不相关;
5、特殊因子之间也不相关;
对因子分析中抽取的公因子,需要观察它们在哪些变量上的载荷较大,并据此说明该公因子的实际含义(公因子命名)。然而,得到初始公因子模型后,因子载荷矩阵往往比较复杂,不利于因子的解释。这时必须通过因子旋转,使得载荷矩阵中的各元素数值向0和1两个极端分化,同时保持同一行中各元素的公因子方差不变。这样,通过因子旋转,各变量在因子上的载荷更加明显,有利于对各公共因子给出更加明确合理的解释。旋转的方法有正交旋转法、斜交旋转法,最大方差法等,比较常用的是最大方差法。
与主成分分析一样,在抽取公因子以后,还可以用回归估计等方法求出因子得分的数学模型,将各公因子表示成变量的线性形式,并进一步计算出因子得分,从而解决公因子不可测度的问题,实现对样本进行综合评价的目的。因子得分函数为:
因子分析中的旋转
在因子分析中,理想的情况是某一主因子仅在某几个观测变量上有较强的载荷,而在其它观测变量上的载荷值很低,这样就可以直接使用这几个观测变量的综合语义来描述该主因子。然而,在某些情况下,主因子在各个观测变量上的载荷是均衡的,很难直接从观测变量中抽取出主因子的语义。在这种情况下,为了使观测变量对主因子的描述更为集中,可以通过坐标轴的空间变换来改变主因子,使得每个主因子都可以对应各自的一组描述变量,这种变换使几何空间上的数据点更加贴近新的坐标轴,从而使观测变量因不同的主因子而被区分开。这就是旋转变换的概念。
对于因子分析中的载荷矩阵,在经过旋转变换后,如果主因子之间仍保持不相关的关系,则称之为正交变换;如果允许主因子之间存在一定的相关性,则称之为斜交变换。
范例分析
为提高公司员工的工作积极性,某公司人事部对公司的员工做了一次工作积极性影响因素的问卷调查,问卷包括40个问题。
总共回收了752份问卷,对这些数据进行因子分析,分析影响员工积极性的因素有哪些,并分析该问卷的结构效度的优劣。
分析步骤
1、选择菜单【分析】-【降维】-【因子分析】命令,打开因子分析对话框,进行下图操作;打开【描述】选项,将原始分析结果,KMO和Bartlett球形度检验选中。
2、点击【抽取】,打开下图的对话框,进行如下选择;
3、打开【旋转】,【得分】和【选项】按钮,打开对话框,进行如下选择;点击【确定】,输出结果。
结果解读
1、KMO和Bartlette的检验
由于KMO值为0.944,表示原始变量之间相关性很强,非常适合做因子分析;Bartlett检验的 Sig值为0.000,同样说明数据适合做因子分析。
2、总方差解释
只有前8个公因子的特征值大于1,所以系统默认提取前8个新变量为公因子。从表格中还可以知道,前8个公因子对总方差的解释量为65.345%,低于精确解80%以上的总方差解释量要求,但是在社科领域,60%以上的解释量,还是可以作为参考信息进行下一步解释的。
3、碎石图
从碎石图也可以看出,从8号公因子以后,斜率就非常的平缓了。
4、成分矩阵
所有成分矩阵都是按照因子系数大小排列的,并只显示绝对值大于0.35的系数。从表格中可知,第一个因子在40个变量中的38个都有载荷,这样不便于对提取的因子进行解释,因此,通过因子旋转,使因子载荷两极化。
5、旋转后因子载荷矩阵
坐标旋转以后,表格就变成了上面的形式,这样不同问题的因子归属就明确了,这时,就可以根据因子在哪些变量上有较高的载荷而对因子进行命名。例如,因子1反映的是工作伙伴和团队成员的合作,因此可以命名为团队合作;因子2反映上级经理管理水平;因子3反映的是公司提供的学习培训机会。
从上表还可以看出,该问卷通过因子旋转共获得8个因子。这些因子中,最少的包含3个问题,最多的包含6个问题,且在这些问题上的因子载荷介于0.403到0.830之间,都大于0.35的最小可接受值,这说明该问卷的结构效度很高。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16