SPSS分析技术:因子分析;调查问卷的效度分析
在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况,这几个不同的问题都指向课件的制作,它们最后的得分情况也将表现出强烈的相关关系。再比如不同的运动项目的成绩,看似没有关系,但是其实它们用到的核心力量是会有重叠的,铅球和铁饼都会用手部肌肉等。
上面这些例子都有一个特点,就是问卷调查的不同题目得分之间,体育运动的不同项目成绩之间会有交叉和重叠的地方,可以通过因子分析,将这些交叉和重叠的信息提取出来,形成新的变量,称为因子,用这些因子来反映不同项目,不同题目,不同变量之间的内部关系。因子分析可以看作是主成分分析的推广。因子分析通过从众多相关联的变量中抽取少量公因子,起到了减少变量数量的作用,所以和主成分分析一样,也是一种降维方法。
因子分析是问卷等数据收集手段的结构效度分析的主要方法,所谓结构效度是指测量工具对测量对象的测量能力。问卷的效度是指问卷能够测量出某种理论特质或概念的程度,也就是实际的问卷测量得分能够解释理论特质或概念的程度。从其实际应用的视角看,因子分析产生的结果是归纳出测量变量对潜在属性的描述,从而实现了对测量性质准确性和测量结果正确性的描述,因此,因子分析能够检验问卷效度。
因子分析和主成分分析
主成分分析只是因子分析的一个提取方法,因子分析除了可以用主成分分析提取公因子以外,还能使用其它的方法,SPSS提供的因子分析方法有:
因子分析的数学模型
现在有k个样本,每个样本由n个变量来描述,这n个变量之间有较强的关联性。如果每个变量都可以用m个(公因子)解释,则可以表示为:
因子分析模型需要满足以下几个条件
2、公因子的均值为0;
3、公因子与特殊因子之间不相关;
4、公因子之间互不相关;
5、特殊因子之间也不相关;
对因子分析中抽取的公因子,需要观察它们在哪些变量上的载荷较大,并据此说明该公因子的实际含义(公因子命名)。然而,得到初始公因子模型后,因子载荷矩阵往往比较复杂,不利于因子的解释。这时必须通过因子旋转,使得载荷矩阵中的各元素数值向0和1两个极端分化,同时保持同一行中各元素的公因子方差不变。这样,通过因子旋转,各变量在因子上的载荷更加明显,有利于对各公共因子给出更加明确合理的解释。旋转的方法有正交旋转法、斜交旋转法,最大方差法等,比较常用的是最大方差法。
与主成分分析一样,在抽取公因子以后,还可以用回归估计等方法求出因子得分的数学模型,将各公因子表示成变量的线性形式,并进一步计算出因子得分,从而解决公因子不可测度的问题,实现对样本进行综合评价的目的。因子得分函数为:
因子分析中的旋转
在因子分析中,理想的情况是某一主因子仅在某几个观测变量上有较强的载荷,而在其它观测变量上的载荷值很低,这样就可以直接使用这几个观测变量的综合语义来描述该主因子。然而,在某些情况下,主因子在各个观测变量上的载荷是均衡的,很难直接从观测变量中抽取出主因子的语义。在这种情况下,为了使观测变量对主因子的描述更为集中,可以通过坐标轴的空间变换来改变主因子,使得每个主因子都可以对应各自的一组描述变量,这种变换使几何空间上的数据点更加贴近新的坐标轴,从而使观测变量因不同的主因子而被区分开。这就是旋转变换的概念。
对于因子分析中的载荷矩阵,在经过旋转变换后,如果主因子之间仍保持不相关的关系,则称之为正交变换;如果允许主因子之间存在一定的相关性,则称之为斜交变换。
范例分析
为提高公司员工的工作积极性,某公司人事部对公司的员工做了一次工作积极性影响因素的问卷调查,问卷包括40个问题。
总共回收了752份问卷,对这些数据进行因子分析,分析影响员工积极性的因素有哪些,并分析该问卷的结构效度的优劣。
分析步骤
1、选择菜单【分析】-【降维】-【因子分析】命令,打开因子分析对话框,进行下图操作;打开【描述】选项,将原始分析结果,KMO和Bartlett球形度检验选中。
2、点击【抽取】,打开下图的对话框,进行如下选择;
3、打开【旋转】,【得分】和【选项】按钮,打开对话框,进行如下选择;点击【确定】,输出结果。
结果解读
1、KMO和Bartlette的检验
由于KMO值为0.944,表示原始变量之间相关性很强,非常适合做因子分析;Bartlett检验的 Sig值为0.000,同样说明数据适合做因子分析。
2、总方差解释
只有前8个公因子的特征值大于1,所以系统默认提取前8个新变量为公因子。从表格中还可以知道,前8个公因子对总方差的解释量为65.345%,低于精确解80%以上的总方差解释量要求,但是在社科领域,60%以上的解释量,还是可以作为参考信息进行下一步解释的。
3、碎石图
从碎石图也可以看出,从8号公因子以后,斜率就非常的平缓了。
4、成分矩阵
所有成分矩阵都是按照因子系数大小排列的,并只显示绝对值大于0.35的系数。从表格中可知,第一个因子在40个变量中的38个都有载荷,这样不便于对提取的因子进行解释,因此,通过因子旋转,使因子载荷两极化。
5、旋转后因子载荷矩阵
坐标旋转以后,表格就变成了上面的形式,这样不同问题的因子归属就明确了,这时,就可以根据因子在哪些变量上有较高的载荷而对因子进行命名。例如,因子1反映的是工作伙伴和团队成员的合作,因此可以命名为团队合作;因子2反映上级经理管理水平;因子3反映的是公司提供的学习培训机会。
从上表还可以看出,该问卷通过因子旋转共获得8个因子。这些因子中,最少的包含3个问题,最多的包含6个问题,且在这些问题上的因子载荷介于0.403到0.830之间,都大于0.35的最小可接受值,这说明该问卷的结构效度很高。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13