一、概念(分析-均值比较-单因素方差分析):
按照单因子变量(自变量)生成对定量因变量的单因素方差分析。方差分析用于检验数个均值相等的假设。这种方法是双样本t 检验的扩展。除了确定均值间存在着差值外,您可能还想知道哪些均值之间存在着差值。比较均值有两类检验方法:先验对比和两两比较检验。对比是在试验开始前进行的检验,而两两比较检验则是在试验结束后进行的。您也可以检验各个类别的趋势。
二、假设:(多个总体均值是否相等的假设检验问题)
每个组是来自正态总体的独立随机样本。尽管数据应对称,但方差分析对于偏离正态性是稳健的。各组应来自方差相等的总体。为了检验这种假设,请使用Levene的方差齐性检验。多个总体均值是否相等的假设检验问题。原假设:组内均值(组内离差平方和)=组间均值(组间离差平方和)
三、满足条件:
1、在各个水平之下观察对象是独立随机抽样,即独立性;2、各个水平的因变量服从正态分布,即正态性;3、各个水平下的总体具有相同的方差,即方差齐;
四、多项式(分析-均值比较-单因素方差分析-对比)
1、多项式。将组间平方和划分成趋势成分。可以检验因变量在因子变量的各顺序水平间的趋势。例如,您可以检验各个顺序级别的最高工资水平间的线性趋势(上升或下降)。
◎度。可以选择1 度、2 度、3 度、4 度或5 度多项式。
2、系数。用户指定的用t 统计量检验的先验对比。为因子变量的每个组(类别)输入一个系数,每次输入后单击添加。每个新值都添加到系数列表的底部。要指定其他对比组,请单击下一个。用下一个和上一个在各组对比间移动。
五、假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、LSD(Least-significant difference):最小显著差数法, 用t检验完成各组均值间的配对比较。
2、Bonferroni(LSDMOD)用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
3、Sidak:计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。
4、Scheffe:用F分布对所有可能的组合进行同时进入的配对比较。此法可用于检查组均值的所有线性组合,但不是公正的配对比较。
5、R-E-G-W F:基于F检验的Ryan-Einot-Gabriel-Welsch多重比较检验
6、R-E-G-W Q:基于Student Range分布的Ryan-Einot-Gabr iel-Welsch range test多重配对比较。
7、S-N-K:用Student Range分布进行所有各组均值间的配对比较。
8、Tukey:用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。
9、Tukey’s-b: 用stndent Range分布进行组间均值的配对比较,其精确值为前两种检验相应值的平均值。
10、Duncan:指定一系列的Range值,逐步进行计算比较得出结论。
11、Hochberg‘s GT2:用正态最大系数进行多重比较。
12、Gabriel:用正态标准系数进行配对比较,在单元数较大 时,这种方法较自由。
13、Waller-Dunca:用t统计量进行多重比较检验,使用贝叶斯逼近的多重比较检验法。
14、Dunnett:多重配对比较的t检验法,用于一组处理对一个控制类均值的比较。默认的控制类是最后一组。
六、未假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、Tamhane’s T2:基于t检验进行配对比较。
2、Dunnett’s T3:基于Student最大模的成对比较法。
3、Games-Howell:Games-Howell比较,该方法较灵活。
4、Dunnett’s C:基于Student极值的成对比较法。
七、统计量(分析-均值比较-单因素方差分析-两两比较-选项)
1、描述性。计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最小值、最大值和95% 置信区间。
2、固定和随机效果。显示固定效应模型的标准差、标准误和95% 置信区间,以及随机效应模型的标准误、95% 置信区间和成分间方差估计。
3、方差同质性检验。计算Levene 统计量以检验组方差是否相等。该检验独立于正态的假设。
4、Brown-Forsythe。计算Brown-Forsythe 统计量以检验组均值是否相等。当方差相等的假设不成立时,这种统计量优于F 统计量。
5、Welch。计算Welch 统计量以检验组均值是否相等。当方差相等的假设不成立时,这
种统计量优于F 统计量。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13