可穿戴设备的大数据价值仍待释放
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户黏性。PC互联网时代促成了商业的繁华,与工业时代的最大区别就在于用户黏性减小,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网时代,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户黏性,也就是说基于智能手机的移动互联网更深一步地与用户之间具有了黏性。
如果用一句话来形容,也就是说PC互联网的用户黏性是按小时计算,而移动互联网的用户黏性被缩短到按分钟计算,这种用户黏性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因。而进入可穿戴设备时代,由于人与设备之间实现了更深入无缝的连接,用户黏性从移动互联网的按分钟计算转变为按秒计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天起就一直在争议中不断飞速发展的原因。很显然,我们看到了当其构建的用户黏性被进一步减小之后,所释放出来的商业价值将超越当前由移动互联网带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于黏性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式,其核心价值的大小还是取决于大数据的延伸、挖掘,谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还有一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身,而不是依赖于可穿戴设备的大数据挖掘商业模式。
制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1.数据过于碎片化。由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2.市场普及度不高。由于可穿戴设备是一个新兴的业态,不论业内外,对于可穿戴设备产业都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小。从产品形态层面来看,目前通常局限于智能手表、智能手环。而从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。这种情况也制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3.用户黏性不高。可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用黏性,但从目前的实际情况来看,黏住用户还有一段路要走。其中主要原因是两方面,一方面受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通信等,还是软层面的算法、结果反馈等,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事可穿戴设备产业的技术人才大部分都是从IT或通信产业跨界而来。正是这两方面的因素,导致可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致很多用户在购买可穿戴设备佩戴很短一段时间之后,就直接将其弃置了,这也就意味着开发者所采集的数据难以成为有效、有价值的数据。
当然,影响可穿戴数据有效采集的因素多种多样,上述三方面因素是可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可预料在短时间内还会伴随着整个产业的发展继续存在着,也即此种状况在短期内将难以得到有效的改善。因此,对于可穿戴设备产业的创业者而言,目前距离可穿戴设备大数据价值的梦想还有一段路。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22