可穿戴设备的大数据价值仍待释放
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户黏性。PC互联网时代促成了商业的繁华,与工业时代的最大区别就在于用户黏性减小,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网时代,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户黏性,也就是说基于智能手机的移动互联网更深一步地与用户之间具有了黏性。
如果用一句话来形容,也就是说PC互联网的用户黏性是按小时计算,而移动互联网的用户黏性被缩短到按分钟计算,这种用户黏性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因。而进入可穿戴设备时代,由于人与设备之间实现了更深入无缝的连接,用户黏性从移动互联网的按分钟计算转变为按秒计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天起就一直在争议中不断飞速发展的原因。很显然,我们看到了当其构建的用户黏性被进一步减小之后,所释放出来的商业价值将超越当前由移动互联网带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于黏性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式,其核心价值的大小还是取决于大数据的延伸、挖掘,谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还有一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身,而不是依赖于可穿戴设备的大数据挖掘商业模式。
制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1.数据过于碎片化。由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2.市场普及度不高。由于可穿戴设备是一个新兴的业态,不论业内外,对于可穿戴设备产业都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小。从产品形态层面来看,目前通常局限于智能手表、智能手环。而从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。这种情况也制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3.用户黏性不高。可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用黏性,但从目前的实际情况来看,黏住用户还有一段路要走。其中主要原因是两方面,一方面受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通信等,还是软层面的算法、结果反馈等,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事可穿戴设备产业的技术人才大部分都是从IT或通信产业跨界而来。正是这两方面的因素,导致可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致很多用户在购买可穿戴设备佩戴很短一段时间之后,就直接将其弃置了,这也就意味着开发者所采集的数据难以成为有效、有价值的数据。
当然,影响可穿戴数据有效采集的因素多种多样,上述三方面因素是可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可预料在短时间内还会伴随着整个产业的发展继续存在着,也即此种状况在短期内将难以得到有效的改善。因此,对于可穿戴设备产业的创业者而言,目前距离可穿戴设备大数据价值的梦想还有一段路。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29