运营商如何充分“掌控”数据 以大数据换未来
运营商多元化拓展需要带给其他行业新的价值,这个价值可能是更好终端、更好网络、更好平台、更好内容。但所有价值的核心是运营商如何提供更好的对策,承载这个核心的则是“数据”,运营商能否充分地掌控“数据”并对“数据”进行有效诠释,将影响运营商多元化转型未来。
运营商所能赋予的价值
一、如何充分掌控“数据”
1、掌控“数据”的背景
运营商可以称为“数据巨头”,但运营商目前的发展与“数据巨头”并不相称。运营商拥有更为核心的用户基础数据(年龄、性别、账单等),以及用户通信数据(位置、流量、语音等),这两个核心数据是一般企业无法比拟的。正是因为运营商能够掌控用户的核心数据,所以运营商存在能够掌控其他行业的数据的可能性。
缺乏其他行业数据,运营商所有核心数据的价值没有发挥余地。运营商重点将落在其他行业数据的拓展上,运营商的多元化拓展,实际是运营商对多元化数据的拓展,运营商数据版图越广阔,业务将越多元。
2、掌控“数据”的模式
运营商如何掌控各行各业的数据,运营商需要同时构建通信服务平台、以及与各行业相应的信息服务平台来支撑各行各业的服务,运营商通过通信服务平台与信息服务平台来记录消费者、商家/政府、服务商的各种各类数据。再通过平台上的人工智能、大数据分析来实现数据价值的变现。
在这个模式上,运营商并不是直接向消费者提供服务,而是由专业的服务提供商向消费者提供服务。这是否意味着运营商被边缘化或管道化,恰恰相反的是运营商掌握了产业链的核心价值——“数据”,运营商通过强大通信服务平台捆绑信息服务平台进而掌控产业链上下游的“数据”。产业链的核心并不是服务商所能提供的内容,而是运营商对数据的诠释与运用。对症下药、服务匹配才是产业链的核心价值。
NTTdocomoHealthcare推出WM平台,主要用来收集、分析、预测用户健康数据。在这平台上构建各种各类与健康相关的应用例如“健康管理”、“步行挣钱”、“作息管理”、“女性专属”、“预防接种”、“怀孕监控”、“育儿记录”等。合作商通过这个平台为消费提供专业服务与产品,例如医疗建议、保健建议、穿戴设备、测量仪等,个人消费者通过应用获得专业的服务,普通商家或广告商通过平台获得潜在营销客户。该平台将运营商、服务/产品提供商、个人消费者、普通商家/广告商四个角色有效串联起来,形成共生共赢的生态系统。
运营商掌控“数据”的核心,是搭建数据平台,专注数据的运营,通过大数据分析或人工智能,为消费者提供针对性服务、为服务商提供客户匹配与服务、产品优化建议,为商家/广告商提供客户匹配与营销策略优化建议。运营商对数据的掌控,实际是运营商通过数据支撑来实消费者、服务商、商家之间的有效沟通。
二、如何有效诠释“数据”
数据不是被制造出来,数据只是被记录而呈现,数据是对现实世界的描述。我们之所以能通过数据来诠释现实世界,是因为我们通过数据构建能解释现实世界的模型。数据仅当被记录的时候存在,诠释现实世界的模型仅被数据验证才显真实。数据不断被记录,模型不断被优化,模型才能更接近现实世界。
数据的诠释,其实是指运营商与现实世界互动的过程,更确切的是运营商对现实世界进一步理解的过程。运营商通过大数据分析,不断优化诠释现实世界的模型,找到现实世界运作的机理,发现现实世界的不足与问题,进而针对性提出相应的对策与解决方法。
数据的诠释的过程,即是运营商创造价值的过程。数据的诠释带有一定目的或方向,要么解决问题或难题,要么让事情变得更好,当然是好的目的与方向,才能带来价值。例如在制造业方面,运营商可以帮助工厂监测失败信号、产品质量控制、提升安全、提升运营等;在农业方面,运营商可以帮助农民扩大规模、提高质量、节省农动力、获取有价值信息,提供安全可靠食物等。正如NTT解决方案,所有解决方案都有初步的想法与目的,这个想法与目的则源于运营商对行业的初步理解。数据的诠释,一方需要通过大数据挖掘、人工智能来理解数据,另一方面则需要运营商通过真实世界的切实了解实际问题与情况。
价值的大小,完全取决于运营商掌控的数据量,以及对数据的诠释能力。运营商掌控数据越多、诠释数据越透彻越能给出有价值的对策。正如NTT解决方案中,运营商通过大量各类感应设备、物联网等尽可能多收集数据,累积数据,再通过大数据分析、人工智能来诠释数据,然后做出预测与行动,最终创造价值。运营商需要尽可能收集数据,以及构建强大数据分析与人工智能平台,才能成功利用数据创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31