衡量营销影响的5项重要指标
如今,提到市场营销几乎不可避免要谈到数据。在中国这个体量巨大的市场,有关市场、客户、销售和服务的信息浩如烟海,使得营销人员接触的各类数据更多。如果不能加以利用,那拥有再多的数据也是毫无意义。而且,数据不仅用于传达营销举措和结果,还用于精细调整营销方案……成功利用数据的关键在于跳出标准框架的限制。
很多营销工具只是使用相同的预定指标制定一个框架,或者需要开发人员才可进行自定义。但是,模板框架只能显示正在发生的状况,而不容许你提出下一个问题、探寻原因和进行发掘。为清晰说明一项市场营销方案的实际影响,你需要提出创造性的问题并能够在你的数据中追求新的理论,因为业务是不断变化的。
考虑到这一点,以下是能够衡量营销影响的五种方法——以及可同时使用的一些专业技巧。
1. 测量内容之间的相互作用,以精细调整商机评估模型:
人人都谈内容,因为好的内容策略能将营销方案提升到新的高度。但是,重要的是超出计算页面视图和网络流量的范围限制,将下载、互动时间、搜索量、社会共享、转化率等相互作用的指标纳入囊中,并在预期不偏离销售漏斗的情况下审视指标。你可以使用相互作用的内容为基础来制定和微调商机评估模型。关键是避免在一个模型内跟踪所有营销内容。数据驱动成功的关键在于各部门与平台之间的数据共享,以理解整个生态系统。
2. 通过融合数据理解社交媒体的最佳用途:
多年以来,社交媒体已成为纯粹的狂欢会。过去在社交媒体上我们只是宣布我们有一批追随者而已,但那种日子已经一去不复返了。尤其在中国,微信与微博是最常用的两大社交应用和信息获取平台。越来越多的企业想运用这两大新媒体平台巨大的用户基数和流量来进行营销推广活动。面对点阅量、转发量、粉丝量等复杂的数据统计,尤其有必要进行数据融合和汇总。例如,如果你使用社交媒体作为一种客户服务工具,你需要观察响应率和问题解决率,可能还需要将它与客户满意度挂钩。但是,即使和其它应用工具一起使用时,观察和理解社交媒体影响力的唯一方式仍是将其与目标置于同一背景之下……就是说将社交影响的数据拿出标准框架并与外部资源融合。
3. 观察活动的整体参与度:
矛盾的是,活动在数字时代继续为客户提供独特的体验,并构成营销组合的一部分,但是量化活动的影响力通常比较困难。要想获得尽可能多的信息,应考虑活动的整体参与度,衡量社交活动、现场预约、展位光顾量、代表的交谈次数、捕捉的商机等等。然后,再看这些数字与网络流量和销售量等指标之间的关系,即拥有在一处显示多种数据资源的能力。
4. 了解商机的业务转化率:
商机生成率是衡量最多的营销指标。当商机发生变化时,大家都想了解其中的原因。你应确保考虑到从点击率到转化率、人均客户成本、商机质量和内容之间的相互作用——以及这些指标之间的关系。此外,你还应当清楚如何在你的销售渠道或销售力量中分配这些商机。对一些大公司来说,这可能意味着成千上万位销售人员,因此使用可显示整体情况和分配详情的图解非常重要。通常情况下,商机变化的原因只能在底层数据中发现,而非数据概览。
5. 以小见大——显示整个漏斗:
如上所述,衡量影响的唯一关键可能就是将其置于背景之中考虑。能够纵观整个营销漏斗是成为一位真正的数据驱动型营销人员的唯一途径,因为透过它可以看到某项活动对下游环节……乃至底线的影响。这一点必须通过互动的方式进行,从而让所有人都能驱动和追求他们自己的原因理论。
综上所述,不要局限于将所有不同数据置于同一个框架之中,或者仅在营销漏斗停止时停止。做到真正的数据驱动意味着再前进几步,并且通常是在动态中进行的。
所有这些可能会让人不知所措,但请不要气馁。如果上述任一指标在目前尚未被衡量或关联,你最好马上开始。举例来说,当你需要快速的做活动分析来分析数据库中关于不同地域、来源、行业和其它分类的数据的时候。有了Tableau交互数据可视化功能,你能搜索数据从而理解数据趋势走向并设计新的活动,监测你活动中的成功之处,并通过分析衡量标准使你的营销数据最大化的得到利用。通过市场、活动、目标客户群的人口统计来将收益分类,可以极大地优化你的活动组织和市场分割。使用地域筛选,可逐月细分你的收入,理清在这些地区哪些产品更受欢迎。
慢慢地,你在收集、跟踪、融合和匹配不同指标以理解营销影响的方面就会做得更好。有一点需要明确:这个使用不同数据设计灵活和切实有用的新框架是一个互动的过程。在这个过程中,你作为一位现代营销人员应当不断前进,无论你的起点如何。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10