2017数据分析市场的10个预测
在2016年,是数据准备和分析突破的一年。采用自助式分析解决方案的速度飞快发展起来,因为业务用户需要能够分析数据而不必再依赖IT。
自助数据准备工具也经历了快速增长,因为越来越多的数据用户意识到这项技术可以通过快速找到并访问来自任何来源的数据来节省他们巨大的时间,预算和资源,然后准备在几分之一的时间内进行分析它使用电子表格和其他手动强化措施。
而这一趋势将继续扩大到2017年,事实上,巨大的机会在前面。我们将继续看到尽可能多的创新,这些创新将持续改变数据科学家,数据分析师和业务用户如何利用洞察力来实现企业价值并改进运营流程。
数据准备和分析领域在2016年取得了巨大的增长,包括自助服务工具的兴起。那么明年的空间会怎样?
数据社会化将成为大事
自助服务分析无意中致使许多公司的数据格局变得像狂野西部。 数据现在分布在整个组织中,并且经常被孤立地管理。数据和分析结果没有被共享和重用,相反,用户没有体会到重复数据建模的好处,而是需要从头开始进行每个项目的分析。此外,由于分布式架构,IT部门在管理和保护这些信息方面还处于挣扎之中。
自助数据准备服务将彻底变革
这种变革性的新功能将传统的自助服务数据准备优势与社交媒体平台常见的关键属性相结合,使数据科学家,业务分析师甚至公司的新手业务用户都能够搜索,共享和重用准备好的管理数据,从而更好的进行商业决策。公司将通过使用集中的,具有合规性的,获批准的数据源,进行更安心的数据治理。
认证的数据集将升级
因为数据分布在整个组织中,用户经常在隔离中工作,所以信息变得不可控和不可预测。信息治理不善会增加安全性和合规性风险,并导致较差的数据质量。因此,数据分析师和业务用户经常不信任其来源,并且缺乏对数据准确性,及时性和有效性的信心。
数据湖将变得不那么重要
许多公司已经尝试在中央存储器实现数据湖,但是该方法已经证明很大程度上不成功。 数据用户通常难以找到并访问正确的数据进行分析。在2017年,我们将看到由IT和数据分析师创建的认证数据集的兴起,它验证了不同来源的分组,并允许业务用户轻松访问。跨部门共享这些经过认证的数据集将确保数据质量,增强对数据,分析流程和结果的信任。
数据质量和数据准备将开始融合
数据质量和数据准备现在是两个单独、不同的功能。但随着他们的发展,数据准备解决方案现在已经融入了许多数据质量能力,而数据质量供应商正在解决数据准备问题。在2017年,数据质量和数据准备将趋于一致,组织将更好地了解如何实施两者的功能以获得最佳的分析结果。
物联网数据将推动时间序列数据库的需求
越来越多的公司开始使用互联网的物联网数据来进行分析。但是他们发现,将这些信息放到没有能力有效地分析来自物联网设备的数据的存储库中不再有效。由于物联网设备及其生产的实时数据,明年我们将看到对时间序列数据库的需求以及实时数据准备功能的上升。
机器学习将产生更多的智能数据
机器学习或算法分析是在数据被清理,准备和分析之前对数据进行应用智能,从而产生更好的数据集。通过使用智能数据,用户可以洞察其他人做了什么,以及它如何补充其他数据集,以提高分析过程。在新的一年里,我们将看到更多的组织利用智能数据进行分析和改进操作流程。
高级分析将变得更加普遍
高级分析的过程在传统上往往被委托给数据科学家。但更多的供应商正在将高级分析功能添加到他们的解决方案中,使业务用户能够处理这一过程以获得预测性的洞察力。在2017年,我们将看到高级分析从新颖性转变为驱动公司运营的核心能力。
虚拟化和云计算将至高无上
数据虚拟化将成为更受欢迎的分析处理。 这是个充满希望的技术。 它降低成本,因为组织不需要创建仓库; 它有助于实时分析,因为数据不需要移动; 并提高敏捷性,使用户能够更快地分析更多来源。
数据虚拟化将获得绿灯
数据虚拟化在过去的几年间存在着多重阻碍,致使其不被用于分析。虽然挑战仍然存在,但是我们将在2017年再次对这项技术感兴趣,主要是由于供应商将数据虚拟化与数据准备相结合,创建了一种以较低成本提供自助服务敏捷性的信息架构。在云计算中,我们将看到该技术的突出程度将在2017年达到了一个全新的水平,与本地系统相比,更多的数据访问和存储将基于云的数据仓库。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20