2017数据分析市场的10个预测
在2016年,是数据准备和分析突破的一年。采用自助式分析解决方案的速度飞快发展起来,因为业务用户需要能够分析数据而不必再依赖IT。
自助数据准备工具也经历了快速增长,因为越来越多的数据用户意识到这项技术可以通过快速找到并访问来自任何来源的数据来节省他们巨大的时间,预算和资源,然后准备在几分之一的时间内进行分析它使用电子表格和其他手动强化措施。
而这一趋势将继续扩大到2017年,事实上,巨大的机会在前面。我们将继续看到尽可能多的创新,这些创新将持续改变数据科学家,数据分析师和业务用户如何利用洞察力来实现企业价值并改进运营流程。
数据准备和分析领域在2016年取得了巨大的增长,包括自助服务工具的兴起。那么明年的空间会怎样?
数据社会化将成为大事
自助服务分析无意中致使许多公司的数据格局变得像狂野西部。 数据现在分布在整个组织中,并且经常被孤立地管理。数据和分析结果没有被共享和重用,相反,用户没有体会到重复数据建模的好处,而是需要从头开始进行每个项目的分析。此外,由于分布式架构,IT部门在管理和保护这些信息方面还处于挣扎之中。
自助数据准备服务将彻底变革
这种变革性的新功能将传统的自助服务数据准备优势与社交媒体平台常见的关键属性相结合,使数据科学家,业务分析师甚至公司的新手业务用户都能够搜索,共享和重用准备好的管理数据,从而更好的进行商业决策。公司将通过使用集中的,具有合规性的,获批准的数据源,进行更安心的数据治理。
认证的数据集将升级
因为数据分布在整个组织中,用户经常在隔离中工作,所以信息变得不可控和不可预测。信息治理不善会增加安全性和合规性风险,并导致较差的数据质量。因此,数据分析师和业务用户经常不信任其来源,并且缺乏对数据准确性,及时性和有效性的信心。
数据湖将变得不那么重要
许多公司已经尝试在中央存储器实现数据湖,但是该方法已经证明很大程度上不成功。 数据用户通常难以找到并访问正确的数据进行分析。在2017年,我们将看到由IT和数据分析师创建的认证数据集的兴起,它验证了不同来源的分组,并允许业务用户轻松访问。跨部门共享这些经过认证的数据集将确保数据质量,增强对数据,分析流程和结果的信任。
数据质量和数据准备将开始融合
数据质量和数据准备现在是两个单独、不同的功能。但随着他们的发展,数据准备解决方案现在已经融入了许多数据质量能力,而数据质量供应商正在解决数据准备问题。在2017年,数据质量和数据准备将趋于一致,组织将更好地了解如何实施两者的功能以获得最佳的分析结果。
物联网数据将推动时间序列数据库的需求
越来越多的公司开始使用互联网的物联网数据来进行分析。但是他们发现,将这些信息放到没有能力有效地分析来自物联网设备的数据的存储库中不再有效。由于物联网设备及其生产的实时数据,明年我们将看到对时间序列数据库的需求以及实时数据准备功能的上升。
机器学习将产生更多的智能数据
机器学习或算法分析是在数据被清理,准备和分析之前对数据进行应用智能,从而产生更好的数据集。通过使用智能数据,用户可以洞察其他人做了什么,以及它如何补充其他数据集,以提高分析过程。在新的一年里,我们将看到更多的组织利用智能数据进行分析和改进操作流程。
高级分析将变得更加普遍
高级分析的过程在传统上往往被委托给数据科学家。但更多的供应商正在将高级分析功能添加到他们的解决方案中,使业务用户能够处理这一过程以获得预测性的洞察力。在2017年,我们将看到高级分析从新颖性转变为驱动公司运营的核心能力。
虚拟化和云计算将至高无上
数据虚拟化将成为更受欢迎的分析处理。 这是个充满希望的技术。 它降低成本,因为组织不需要创建仓库; 它有助于实时分析,因为数据不需要移动; 并提高敏捷性,使用户能够更快地分析更多来源。
数据虚拟化将获得绿灯
数据虚拟化在过去的几年间存在着多重阻碍,致使其不被用于分析。虽然挑战仍然存在,但是我们将在2017年再次对这项技术感兴趣,主要是由于供应商将数据虚拟化与数据准备相结合,创建了一种以较低成本提供自助服务敏捷性的信息架构。在云计算中,我们将看到该技术的突出程度将在2017年达到了一个全新的水平,与本地系统相比,更多的数据访问和存储将基于云的数据仓库。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10