这一年来,数据科学家都用哪些算法
在“数据为王”的今天,越来越多的人对数据科学产生了兴趣。数据科学家离不开算法的使用,那么,数据科学家最常用的算法,都是哪些呢?
最近,著名的资料探勘信息网站KDnuggets策划了十大算法调查,这次调查对数据科学家常用的算法进行排名,并发现最“产业”和最“学术”的算法,还对这些算法在过去5年间(2011~2016)的变化,做了一番详细的介绍。
这次调查结果,是基于844名受访者投票整理出来。
KDnuggets总结出十大算法及其投票份额如下:
图1:数据科学家使用的十大算法和方法。
请参阅文末的所有算法和方法的完整列表。
从调查中得知,受访者平均使用8.1个算法,与2011年的一项类似调查相比大幅提高。
与用于数据分析/数据挖掘的2011年投票算法相比,我们注意到流行的算法仍然是回归算法、聚类算法、决策树和可视化。相对来说最大的增长是以(pct2016/pct2011-1)测定的以下算法:
Boosting,从2011年的23.5%至2016年的32.8%,同比增长40%
文本挖掘,从2011年的从27.7%至2016年的35.9%,同比增长30%
可视化,从2011年的从38.3%至2016年的48.7%,同比增长27%
时间序列分析,从2011年的从29.6%至2016年的37.0%,同比增长25%
异常/偏差检测,从2011年的从16.4%至2016年的19.5%,同比增长19%
集合方法,从2011年的从28.3%至2016年的33.6%,同比增长19%
支持向量机,从2011年的从28.6%至2016年的33.6%,同比增长18%
回归算法,从2011年的从57.9%至2016年的67.1%,同比增长16%
在2016年最受欢迎的新算法是:
K-近邻算法(K-nearest neighbors,KNN),46%份额
主成分分析(Principal Commponent Analysis,PCA),43%
随机森林算法(Random Forests,RF),38%
最优化算法(Optimization),24%
神经网络-深度学习(Neural networks-Deep Learning),19%
奇异值矩阵分解(Singular Value Decomposition,SVD), 16%
跌幅最大的算法分别为:
关联规则(Association rules),从2011年的28.6%至2016年的15.3%,同比下降47%
增量建模(Uplift modeling),从2011年的4.8%至2016年的3.1%,同比下降36%
因子分析(Factor Analysis),从2011年的18.6%至2016年的14.2%,同比下降24%
生存分析(Survival Analysis),从2011年的9.3%至2016年的7.9%,同比下降15%
下表显示了不同算法类型的用途:监督学习、无监督学习、元分析和其他算法类型。我们排除了NA(4.5%)和其他(3%)的算法。
表1:按行业类型的算法使用
我们注意到,几乎所有人都在使用监督学习算法。政府和产业的数据科学家们比学生或学术界使用了更多的不同类型的算法,产业数据科学家更倾向使用元算法。
接下来,我们分析深度学习的十大算法按行业类型的使用。
表2:深度学习的十大算法按就业类型的使用
Table 2: Top 10 Algorithms + Deep Learning usage by Employment Type
为了使差异更为醒目,我们计算特定行业类型相关的平均算法使用量设计算法为Bias(Alg,Type)=Usage(Alg,Type)/Usage(Alg,All)-1。
图2:按行业的算法使用偏差
我们注意到产业界数据科学家更倾向使用回归算法、可视化、统计算法、随机森林算法和时间序列。政府/非盈利组织更倾向使用可视化、主成分分析和时间序列。学术研究人员更倾向使用主成分分析和深度学习。学生通常使用算法较少,但他们用的更多的是文本挖掘和深度学习。
接下来,我们看看代表整体KDnuggets访客的地区参与情况。
参与投票者的地区分布如下:
北美,40%
欧洲,32%
亚洲8%
拉美,5.0%
非洲/中东,3.4%
澳洲/新西兰,2.2%
与2011年的调查一样,我们将产业/政府合并为同一个组,将学术研究人员/学生合并为第二组,并计算算法对产业/ 政府的“亲切度”:
亲切度为0的算法在产业/政府和学术研究人员/学生的使用情况相同。IG亲切度约稿表示该算法越“产业”,越低则表示越“学术”。
其中最“产业”的算法”是:
增量建模(Uplift modeling),2.01
异常检测(Anomaly Detection),1.61
生存分析(Survival Analysis),1.39
因子分析(Factor Analysis),0.83
时间序列(Time series/Sequences),0.69
关联规则(Association Rules),0.5
虽然增量建模又一次成为最“产业”的算法,但出乎意料的是它的使用率如此低:区区3.1%,在这次调查中,是使用率最低的算法。
最“学术”的算法是:
神经网络(Neural networks - regular),-0.35
朴素贝叶斯(Naive Bayes),-0.35
深度学习(Deep Learning),-0.19
最大期望算法(EM),-0.17
下图显示了所有算法以及它们在产业界/学术界的亲切度:
图3:Kdnugets调查:数据科学家使用的流行算法:产业界vs学术界
下表包含了算法的详细信息,在2016年和2011年使用它们的受访者百分比调查,变化(%2016 /%2011 - 1)和行业亲切度如上所述。
表3:KDnuggets2016调查:数据科学家使用的算法
下表包含各个算法的详细信息:
N: 根据使用度排名
Algorithm: 算法名称
Type:类型。S - 监督,U - 无监督,M - 元,Z - 其他,
2016 % used:2016年调查中使用该算法的受访者比例
2011 % used:2011年调查中使用该算法的受访者比例%Change:变动 (%2016 / %2011 - 1)
Industry Affinity:产业亲切度(上文已提到)
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16