都说大数据是商业“利器”,原理何在
数据能根据我们已有的客户行为数据,判断客户的未来。告诉我们,每一个客户的消费倾向,他们想要什么,喜欢什么,每个人的需求有哪些区别,哪些又可以被集合到一起来进行分类。
大数据是数据数量上的增加,以至于我们能够实现从量变到质变的过程。那么,大数据的商业应用原理是怎样得出的呢?
由功能是价值转变为数据是价值
存储下来的行为记录,如果没有连接的数据是没有用的,改变这一切在于数据的互联网化。非互联网时期的产品,功能一定是它的价值,今天互联网时期的产品,数据一定是它的价值。
例如:大数据的真正价值在于创造,在于填补无数个还未实现过的空白。有人把数据比喻为蕴藏能量的煤矿,煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在大和多,而在于有用和精准,价值含量、挖掘成本比数量更为重要。不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
数据能根据我们已有的客户行为数据,判断客户的未来。告诉我们,每一个客户的消费倾向,他们想要什么,喜欢什么,每个人的需求有哪些区别,哪些又可以被集合到一起来进行分类。大数据是数据数量上的增加,以至于我们能够实现从量变到质变的过程。
从抽样转变为需要全部数据样本
需要全部数据样本而不是抽样,你不知道的事情比你知道的事情更重要,但如果现在数据足够多,它会得出让人能够看得见、摸得着规律。
数据这么大、这么多,所以人们觉得有足够的能力把握未来,对不确定状态进行判断,从而做出自己的决定。这些东西我们听起来都是非常原始的,但是实际上背后的思维方式,和我们今天所讲的大数据是非常像的。
信用卡消费记录里有什么
在大数据时代,无论是商家还是信息的搜集者,会比我们自己更知道你可能会想干什么。现在的数据还没有被真正挖掘,如果真正挖掘的话,通过信用卡消费的记录,可以成功预测未来5年内的情况。统计学里头最基本的一个概念就是,全部样本才能找出规律。为什么能够找出行为规律?一个更深层的概念是人和人是一样的,如果是一个人特例出来,可能很有个性,但当人口样本数量足够大时,就会发现其实每个人都是一模一样的。
从抽样中得到的结论总是有水分的,而全部样本中得到的结论水分就很少,大数据越大,真实性也就越大,因为大数据包含了全部的信息。
由关注精确度转变为关注效率
关注效率而不是精确度,大数据标志着人类在寻求量化和认识世界的道路上前进了一大步,过去不可计量、存储、分析和共享的很多东西都被数据化了,拥有大量的数据和更多不那么精确的数据为我们理解世界打开了一扇新的大门。
大数据能提高生产效率和销售效率,原因是大数据能够让我们知道市场的需要,人的消费需要。大数据让企业的决策更科学,由关注精确度转变为关注效率的提高,大数据分析能提高企业的效率。
例如:在互联网大数据时代,企业产品迭代的速度在加快。三星、小米手机制造商半年就推出一代新智能手机。利用互联网、大数据提高企业效率的趋势下,快速就是效率、预测就是效率、预见就是效率、变革就是效率、创新就是效率、应用就是效率。
从不能预测转变为可以预测
大数据的核心就是预测,大数据能够预测体现在很多方面。大数据不是要教机器像人一样思考,相反,它是把数学算法运用到海量的数据上来预测事情发生的可能性。正因为在大数据规律面前,每个人的行为都跟别人一样,没有本质变化,所以商家会比消费者更了消费者的行为。
例如:大数据助微软准确预测世界怀。微软大数据团队在2014年巴西世界足球赛前设计了世界怀模型,该预测模型正确预测了赛事最后几轮每场比赛的结果,包括预测德国队将最终获胜。预测成功归功于微软在世界怀进行过程中获取的大量数据,到淘汰赛阶段,数据如滚雪球般增多,常握了有关球员和球队的足够信息,以适当校准模型并调整对接下来比赛的预测。
世界杯预测模型的方法与设计其它事件的模型相同,诀窍就是在预测中去除主观性,让数据说话。预测性数学模型几乎不算新事物,但它们正变得越来越准确。在这个时代,数据分析能力终于开始赶上数据收集能力,分析师不仅有比以往更多的信息可用于构建模型,也拥有在很短时间内通过计算机将信息转化为相关数据的技术。
从人找信息变为信息找人
互联网和大数据的发展,是一个从人找信息,到信息找人的过程。先是人找信息,人找人,信息找信息,现在是信息找人的这样一个时代。信息找人的时代,就是说一方面我们回到了一种最初的,广播模式是信息找人,我们听收音机,我们看电视,它是信息推给我们的,但是有一个缺陷,不知道我们是谁,后来互联网反其道而行,提供搜索引擎技术,让我知道如何找到我所需要的信息,所以搜索引擎是一个很关键的技术。
例如:从搜索引擎——向推荐引擎转变。今天,后搜索引擎时代已经正式来到,什么叫做后搜索引擎时代呢?使用搜索引擎的频率会大大降低,使用的时长也会大大的缩短,为什么使用搜索引擎的频率在下降?时长在下降?原因是推荐引擎的诞生。就是说从人找信息到信息找人越来越成为了一个趋势,推荐引擎就是说它很懂我,知道我要知道,所以是最好的技术。乔布斯说,让人感受不到技术的技术是最好的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29