大数据智能化助力淘品牌韩都衣舍2016年盈利预计翻番
都衣舍的野心早已不再是做一个淘品牌了,而它转型“品牌商+服务商”的战略似乎也初见成效。
日前,韩都衣舍发布了未经审计的2016年业绩预告,预计全年归属挂牌公司股东净利润在6000万到7500万之间,比上年同期的3385万元增长一倍左右。这也是韩都衣舍挂牌新三板之后首次披露业绩。
在流量红利衰减,电商整体增速放缓的背景下,这家成立于2006年的淘品牌却保持了强劲增长。财务数据显示,韩都2014年营收达8.3亿元,净利润亏损3756万元。到2015年,营收为12.6亿元,净利转亏为盈,为3321万元。以2016年预计盈利额计算,连续两年的净利润增速达到180%和100%。
在网购风向标天猫“双十一”中,韩都衣舍也表现不赖。2016年,韩都衣舍旗舰店双十一销售额为3.62亿元,在女装类目中排名第五。而据按照交易指数排名,它仅次于优衣库和ONLY,排名第三,成为前十位中唯一上榜的淘品牌。
《2015-2016年度中国服装电商行业报告》显示,服装电商发展已进入成熟期,国内外的传统服装厂牌纷纷上线,对原生的淘品牌形成冲击。最近三年,淘品牌虽然营收增加,但利润率逐年下降。
韩都衣舍的业绩亮点从何而来?他们在业绩预告中给出的关键词是:结构优化、商业智能作用显现、资源整合力提升。在正式年报出炉之前,36氪采访了韩都衣舍副总经理胡近东,了解这些抽象字眼背后的具体内涵。
通过检验的“二级生态”
尽管天猫、京东们已经成为百货市场般深入日常的所在,但对一个试图开店的小品牌而言,运营依然是难以攻克的难题。且不论初期订单量微小无法获得和供应链的议价权,就连发货的包装盒都贵了几分。
这也是资深淘品牌韩都衣舍看到的机会——基于电商们的“一级生态”,利用自身在数据系统和运营能力上的积累,为“小而美”的品牌们提供解决方案,形成以韩都衣舍为轴心的“二级生态”。
如今的韩都衣舍身兼两角。品牌商韩都衣舍拥有18个自有品牌和4个合资品牌,这依然是母公司韩都衣舍赖以起家的核心业务,贡献了营收的大头。多品牌战略也意味着不可能均衡用力,而是抓大放小,及时汰换,比如2016年韩都就停掉旗下一家包袋品牌,更专注于服装条线。
而服务商韩都衣舍也在2016全面发力——成立全资子公司韩都动力,并将韩都衣舍的系统能力和运营能力导入其中,作为服务其他品牌的实体。据了解,韩都收取的佣金在品牌营业额的5%到10%之间。“代运营并不限于卖货,还包括提升综合的品牌力。”胡近东说。
目前,韩都动力的运营品牌超过60个,从初创品牌、传统大牌,到国际品牌、网红品牌不一而足。财报显示,2015年韩都衣舍初涉代运营业务时,其贡献额不足总收入的1%。而2016年,代运营业务有显著增长,但仍处于“战略投入期”。
“代运营的显著效果就是利润在增速比销售收入增长更快。” 韩都衣舍创始人兼CEO赵迎光在解释2016年净利润的突出表现时说。
“小组制”场外版和数据智能
转型服务商对于韩都来说似乎顺理成章,这与其“小组制”的生产组织方式密切相关。一个三人小组就可以担负起一个单品的全程运营,独立核算,责权利统一,后端的摄影、生产、储运、技术、客服、财务部门则为每一个小组提供支持和服务。
将这种逻辑扩大,就有了韩都内部的多品牌和多品类,再进一步扩大,就可以为外部的新品牌继续提供服务。“新品牌的创业团队就可以专注在设计和产品研发上,把控好一个品牌竞争力的核心。”胡近东说。
以十分关键的供应链能力为例,定位于“快时尚”,奉行“多款少量、快速翻单”的韩都衣舍多年来培育出了一套完善的柔性供应链体系——小而灵活的生产线,最低20件起订,在销售旺季(例如双十一)还可以快速追单。据悉,韩都拥有60多家这样的核心供应商,100多家外围供应商。
接下来是如何利用大数据和智能系统匹配和优化产能,实现供应链的协同。依照惯例,韩都衣舍在一季产品上新后根据销售情况做出“爆、旺、平、滞”的排名,平均用时7到12天,之后对爆款和旺款进行追单。智能系统则在持续缩短这个周期,保证有限的产品季内,尽可能减少机会损失。
基于大数据的智能系统也是韩都衣舍近年来最花功夫的地方——每年在IT开发上的投入达到4000万。它除了支持供应链体系,还在仓储、物流、摄影环节的效率提升上功不可没。
“韩都衣舍把自己定位成互联网公司,数据和系统能力是我们的优势。”胡近东说。
“新零售”语境下,这似乎值得深思。在一次公开的行业大会上,赵迎光总结了线上品牌突破天花板的三种路径:全力押注主品牌、向线下实体店延伸、做生态运营商。毫无疑问,同在淘宝上生长起来的品牌们选择了不同的道路——茵曼、裂帛等进军线下,韩都衣舍则坚定地走上第三条道路,并进一步强化互联网属性和数据优势。
至少从目前来看,韩都衣舍交出了更令人满意的答卷。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13