5个开源Python库,点亮你的机器学习之路
机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动提升,如集合工作流,设置数据源,以及在内部部署与云部署的资源之间切换等。
Python 是一款强大的工具语言,被广泛应用在大数据和机器学习之中。以下推荐了 5 个 Python 库,帮你疏通机器学习之路。
PyWren
PyWren 允许你运行基于 Python 的科学计算工作负载,为 AWS Lamba 函数提供多个实例。The New Stack 中项目的配置文件对 PyWren 的描述是,使用 AWS Lamba 作为强大的并行处理系统,处理可以切分为多个小任务的项目,从而不用占据大量的内存或运行空间。
此项目有个缺点是 lambda 函数运行不能超过 300 秒。但如果是一份只需几分钟就能完成的工作,并且要在数据集中运行上千次,那 PyWren 会是不错的选择,它能在一定程度上将用户硬件上无法运行的工作平行化至云端。
Tfdeploy
Google 的 TensorFlow 框架在发布了 1.0 版本之后进入辉煌时期,这时人们要问了:如何才能在不使用 TensorFlow 本身的情况下,使用在 TensorFlow 上训练的框架?
Tfdeploy 能给你答案。它将经过训练的 TensorFlow 模型导出为“简单的基于 NumPy 的可调用对象”,即该模型可以在 Python 中使用,并以 Tfdeploy 和 NumPy math-and-stats 库为唯一的依赖关系。大多数可以在 TensorFlow 中执行的操作也可以在 Tfdeploy 中执行,你可以通过标准的 Python metaphors 来扩展库的行为(如,重载类)。
Luigi
编写批量作业只是处理数据堆的一部分,你还需要将所有作业串起来生成类似工作流和管道的东西。
Luigi 由 Spotify 创建,用于“解决与长期运行成批处理作业有关的管道问题”。开发者可以通过 Luigi 采用多个不同且不相关的数据处理任务,如,Hive 查询,Java 中的 Hadoop 任务,Scala 中的 Spark 任务,从数据库转储 table 等,还可以创建一个端到端运行它们的工作流。
对任务的整个描述以及依存性被打造为 Python 模块,而不是作为 XML 配置文件或其他数据格式创建,因此可以集成到其他以 Python 为中心的项目中。
Kubelib
如果你使用 Kubernetes 作为机器学习作业的编排系统,那么你会祈祷 Kubernetes 产生的问题不要比解决的问题还多。Kubelib 为 Kubernetes 提供了一组 Pythonic 接口,最初是为了协助 Jenkins 脚本工作。但是它可以在没有 Jenkins 的情况下使用,它可以处理 kubectl CLI 或 Kubernetes API 暴露的一切服务。
PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能:强大的 GPU 加速 Tensor 计算(类似 numpy),构建基于 tape 的自动升级系统上的深度神经网络。你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。
通常使用Python是将其作为 numpy 的替代品,以使用强大的 GPU 能力,或作为一个深度学习研究平台,提供最大的灵活性和速度。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20