R语言中apply家族中的系列循环函数总结
R语言中的以apply()函数为首的apply()家族,提供了强大而方便的循环功能,这些函数说起来简单,用起来可能就有点蒙圈儿了。这些函数确实简单,但是可能很多人搞不清这些函数究竟有什么用处与区别呢?R中不是已经有for循环了吗?其实作为一种与Matlab一样的向量化语言,用for循环会把本来速度就慢的R语言的速度拖的更慢,这就要用到apply()家族函数了,下面就对apply()家族中的函数分别做详细的介绍,以便于区别他们。
1、apply函数
apply()是用的最多,也是最好理解的函数了。比如
> x<-cbind(3,c(1:5,4:1))
x是一个9行2列的矩阵
> x
[,1] [,2]
[1,] 3 1
[2,] 3 2
[3,] 3 3
[4,] 3 4
[5,] 3 5
[6,] 3 4
[7,] 3 3
[8,] 3 2
[9,] 3 1
> apply(x,1,mean)
[1] 2.0 2.5 3.0 3.5 4.0 3.5 3.0 2.5 2.0
> apply(x,2,mean)
[1] 3.000000 2.777778
这里第一个参数表示应用的数据为x,第三个参数为应用的函数名(这里是平均值函数),第二个参数取1表示对9行数据求每行均值,取2表示对2列每列求均值。其实对于一个三维数组,第二个参数取3表示对第三维分别应用指定的函数。比如
> x<-array(c(1:24),dim = c(2,3,4))
> x
, , 1
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
, , 2
[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12
, , 3
[,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
, , 4
[,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24
> apply(x,3,mean)
[1] 3.5 9.5 15.5 21.5
这里,由于x的第三维有4个组,因此循环进行了4次,得出了4个值。当然了,这里的指定函数也可以是自定义函数。
2、lapply函数
apply()函数主要是对向量进行循环,而lapply()函数则在对列表元素进行循环时特别有用。
例一
> apply(x,3,mean)
[1] 3.5 9.5 15.5 21.5
> x<-list(a1 = c(1:8),a2 = c(TRUE,FALSE,FALSE,TRUE,TRUE))
> x
$a1
[1] 1 2 3 4 5 6 7 8
$a2
[1] TRUE FALSE FALSE TRUE TRUE
> lapply(x,mean)
$a1
[1] 4.5
$a2
[1] 0.6
这里用lapply()函数指定用mean对列表的2个元素进行遍历求均值,这里列表的第二个元素为布尔型,显然将其0~1对待,求出了均值。
例二
> lapply(x,quantile)
$a1
0% 25% 50% 75% 100%
1.00 2.75 4.50 6.25 8.00
$a2
0% 25% 50% 75% 100%
0 0 1 1 1
这里用lapply()函数指定quantile给出了x的分位数。
3、sapply函数
看下面例子
> sapply(x,quantile)
a1 a2
0% 1.00 0
25% 2.75 0
50% 4.50 1
75% 6.25 1
100% 8.00 1
显然,我们发现这里用sapply()函数也指定quantile求出了x的分位数,与lapply()函数不同的是:sapply()函数默认返回的是一个矩阵,而lapply()函数返回的时一个列表。其实,在sapply()函数中如果返回的长度不一样不能生成矩阵时,才会生成一个列表。
> x1
$a1
[1] 1 2 3 4 5 6 7 8
$a2
[1] TRUE FALSE FALSE TRUE TRUE
这里自定义函数f()返回参数本身,x中两列不一样长,返回类型就为列表。
4、tapply函数
前面介绍的apply()、lapply()、sapply()函数提供的分组循环方式都很简单,tapply()函数提供了更强大、更灵活的循环方式,可能也更难以理解。
例一
> a<-as.factor(c(1,1,2,3,3))
> a
[1] 1 1 2 3 3
Levels: 1 2 3
> tapply(a,a,length)
1 2 3
2 1 2
这里tapply()函数有三个参数,第一个参数指定因子类型a为被循环对象,第二个参数指定a为指针参数,第三个参数指定应用的函数为求长度函数length,这里由于a的因子水平为3,故tapply()函数循环了三次,分别求出三个水平的出现次数。
例二
这里以warpbreaks数据集为例
> head(warpbreaks)
breaks wool tension
1 26 A L
2 30 A L
3 54 A L
4 25 A L
5 70 A L
6 52 A L
> summary(warpbreaks[,c(2:3)])
wool tension
A:27 L:18
B:27 M:18
H:18
warpbreaks的wool变量有两个分类,tension有三个分类。
> tapply(warpbreaks$breaks,warpbreaks[-1],sum)
tension
wool L M H
A 401 216 221
B 254 259 169
这里以warpbreaks的breaks变量作为应用对象,除去第一列(warpbreaks[-1])作为指针参数,第三个参数是应用求和函数。这里函数作用相当于一个分类汇总的功能wool有两个变量,tension有三个变量,一共有2x3 = 6种组合。比如wool = A,tension = L时求和所有breaks就是401。我们可以检验一下如下:
> sum(warpbreaks[which((warpbreaks$wool=='A')&warpbreaks$tension == 'L'),1])
[1] 401
显然,wool = A,tension = L时求和所有breaks就是401。
5、mapply函数
mapply()函数与tapply()函数还是比较相似的,不过与其它apply家族的函数相比,mapply()函数的另一个特点是它的参数顺序与其它函数恰好相反。
例一
> mapply(rep,1:4,4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4
这里mapply()函数有三个参数,第一个指定应用的 函数为rep,就是重复函数;第二个参数指定被应用的对象为序列4:1,第三个参数指定重复的次数分别为1:4,即4要重复一次,3要重复两次等。数据分析师培训
例二
mapply(function(x,y) seq_len(x)+y,c(1,2,3),c(10,20,30))
[[1]]
[1] 11
[[2]]
[1] 21 22
[[3]]
[1] 31 32 33
这里自定义了一个函数seq_len(x)+y,其中seq_len(x)函数作用是生成一个1:X的序列,比如:
> seq_len(3)
[1] 1 2 3
那么对c(1,2,3)就会依次生成1,1:2,1:3的序列,再分别加上10,20,30,就会得到那样的结果了。
可以看出,mapply()函数主要是对中间对象元素与第三个对象元素一一对应,分别应用前面的指定函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11