数据挖掘过程体会
Step1.
就是商业问题的理解了,那么如何更好的理解“老大”提出的商业问题困惑呢?我觉得思维导图倒是个不错的选择,当然自己要想更好的理解“老大”的意思还需要进一步的沟通,商业问题的理解关系到这个挖掘项目的价值,甚至成败,所以在这块大家要显得“外向”一些,多交流、多沟通、多了解这个商业问题背后的东东;
step2.
接下来就是需要提取的字段,也就是数据挖掘的宽表,这点就要和企业的DBA人员多多交流,看数据库中各个维度的表格都有什么字段,主要关联的主键有那些,那么如何选取字段呢?这就需要自己把自己与“老大”共同讨论的思维导图拿出来看看,这样就有提取那些字段的感觉了,这部分大多数的提取是自己对商业问题的感觉或者一些前辈的经验;
Step3
数据的ETL,这部分一般的时间占数据挖掘项目的70%左右,为什么数据的ETL如此重要呢?万丈高楼平地起,如果连地基都是“豆腐渣工程”的话,那么再华丽的楼房也没人愿意掏腰包;嘿嘿,开个玩笑;数据的ETL主要是一些异常值、空值(miss值)、错误数值的处理,这部分一般需要根据数据自身的分布、简单的统计知识、该字段体现的业务特点、自己的经验进行的,也就是这一部分的处理主要是统计知识+项目经验+业务特点;
Step4
建立模型所需要的变量如何选?当然目标变量(Y)一般都是事前设定好的,那么X如何找呢?大多数都是应用相关分析、特征选择、描述性的统计图表(分箱图、散点图等),这里我只想说一句算法是死的,有时候我们根据算法得出来的X对Y没有影响,但在实际的业务中影响却很大,所以大家不要过于依赖算法、工具,我曾经因为这点,被人批了,555~~~~~
建立数据挖掘模型,这块是许多同行相当痴迷的地方,我也不例外,记得大学毕业去北京的时候,就在咨询公司研究算法什么的,后来经过leader的几次谈话,自己才慢慢走出了误区;一句话,我们追求的是模型带来的效益,所以没那么多时间去玩模型、搞算法;但是作为数据挖掘从业者,最基本的应该是了解各种算法的原理,还有一些数据挖掘模型参数的意义,比如在spss clementine中就有自定义和专家两个供大家选择,所以掌握一些参数的意义也是有必要的,大家可以上网下一些人大数据挖掘的视频教程,里面讲的比较详细;
Step6
模型评估,大部分都是借助数据挖掘自带的评估模型来做,什么准确度、收益率等,理论上很完美,实际中就一定有疗效吗?非也!有时候模型跑出来的信息很诡异的,建模人员都无法知道这个结果如何去解读,这时我倒是觉得可以从模型中选取一部分人群来做一下简单的调研,或许能获得更多数据背后的东西,也能为自己的片子多几分数据解读的色彩,何乐而不为呢?
Step7
模型可视化展示,可视化一直是一些数据服务公司所追求的东东,也是我们从业人员一种传达信息的方式,对于一个专题的数据挖掘模型,我相信大家都能通过一些图表、表格或者更炫的PPT搞定,打个岔,我常常遇到这样的问题,在对多维度做交叉分析时,因为涉及许多数据维度的钻取而很难展现给决策者,这时可以用水晶易表来做动态的展示,但是遇到更复杂的逻辑呢?大家不难发现现在大部分的数据分析系统或者叫运营体系的分析维度都是作为一个content展现给使用者,从数据从业者的角度来看,这只是从不同维度对数据进行了切割而已,谈不上真正的数据可视化,路漫漫兮修远兮!业务、维度、用户交互三者融合才是王道;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30