大数据时代统计改革的几点思考
随着市场经济的不断发展,大数据被越来越多地应用在现实生活中。统计调查改革也应围绕大数据展开,如何将大数据中专业化处理和深层次挖掘应用其中,在统计调查事业上发挥和实现大数据的价值,成为统计调查改革的一大命题。笔者认为,大数据时代,统计调查改革应从以下几方面着手。
构建政府大数据统计体系
大数据环境下,政府统计体系需要依照海量数据的采集、分析、挖掘和发布这几个技术层面,进行相应的机构设置。目前按专业、部门条块分割的方式所进行的机构设置模式亟待优化。应构建一个统一、协调、有序、优化的统计机构体系,打破部门、行业、科室、级别等限制,按照统计业务流程分别设立制度设计部门、数据采集部门、数据管理部门、数据发布部门、数据质量评估部门、数据分析部门、执法监察部门等职能中心。
健全大数据管理机制
大数据数据源整合的核心是衔接数据标准与分类。目前,绝大多数大数据仍以各种形式零散地存在于政府部门、电商企业、电信运营商和互联网公司等数据持有者手中。数据标准不统一,指标口径杂乱,数据之间难以整合和衔接,从而限制了大数据的应用和共享。应推进政府数据采集工作的标准化,将存在于企业、部门的大数据通过制度标准转化为结构化数据,要对视频、图片、文字等大规模非结构化数据以及半结构化数据进行标准化处理。标准化工作运行后,可以在现有各类交易终端上加装统计采集装置,并通过物联网技术,搜集、存储和实时分析节点数据流,形成整合生产、物流、交易等所有环节在内的标准化数据采集模式。
大数据时代,政府统计工作应该把更多的精力投放于统计制度和技术方法的设计、统计规范和数据标准的制定、统计安全与公众隐私的平衡、官方发布与民调组织的协调等机制研究和实践应用方面。相应的,工作重点也应该由“组织调查干统计”转变为“依法行政管统计”,不断以自身的机制创新和模式创新适应大数据时代对政府统计工作提出的新要求。
提高数据挖掘分析能力
政府统计工作的传统分析方式是根据统计制度的设计要求和对于研究对象的经验认知,对以传统方式采集上来的数据进行计算分析。然而大数据背景下的数据分析工作,政府统计部门面临的则是大量存储于云端的非结构化或半结构化数据。这种应用背景下,数据分析则变成政府统计部门一个关键性的技术环节,需要专业化的数据挖掘与分析处理技术来探寻数据之间的内在关系,寻找更多有价值的衍生信息。这就要求大数据环境下的政府统计部门,不但要具备将非标准化信息转化为结构化的标准数据的能力,而且还需要有测度出数据变量之间内(外)生影响因素的专业化数据分析水平。
面对海量数据,为了在未来的数据竞争中让统计发挥更大的社会功能,就必须在数据挖掘方面进行探索。一是要利用现代信息技术努力缩短数据采集、传输、汇总、存储、发布等主要环节的时间,使数据发布更加及时;二是增加对主要统计指标的解读和诠释,提高对统计数据的解读能力,加大对统计数据的解读力度;三是除传统媒体外,增加对互联网、微博、社交平台等新媒体的发布,更好地满足社会各界对统计数据的需求;四是在发布载体、时间、频率的选择上更加灵活,使政府统计更好地服务大众、服务社会;五是采用数据可视化技术直观地展示数据,以获得“一表胜千言”“一图胜千言”的效果。
完善统计数据发布机制
有人说,大数据的真实价值就像漂浮在海洋中的冰山,绝大部分都隐藏在表面之下。大数据时代不仅是一个充满数据的时代,更是一个全人类充分运用大数据的时代,它要求数据必须开放和流通,呈现公开、流动、共享的状态。政府统计需要做的工作是在提高数据发布的针对性、降低数据理解的复杂性和发挥数据信息的价值性方面进行模式创新。
统计最终是为用户服务的,发布对用户有价值的统计数据才是统计存在的意义所在。因此,要完善政府统计的数据发布形式,提高数据发布的针对性,发挥数据的最大信息价值。在发布数据的形式上,以文字、表格的方式发布统计数据已经跟不上用户的数据需求,也落后于商业调查的步伐。目前,文本可视化、视景仿真等新兴阅读技术已经大范围应用到计算机及其他商业领域,广义上的“智慧”概念也已经渗透到社会发展的各个方面。因此,政府统计工作应尽量缩减传统意义上的大段文字、复杂表格等难以契合公众需求和时代特点的数据发布形式,转而以新兴技术和新兴媒体为依托,加大技术投入和发布媒介创新,拓展各级各类发布渠道,充分挖掘并发挥出统计数据的实用价值。
优化数据安全保障机制
大数据背景下的统计工作,数据结构各式各样,对数据安全标准和保密性要求也不尽相同,在高度透明的网络运行中,如何进行统计数据的采集、处理以及公布都十分重要。因此,大数据时代应该更加注重数据的安全管理,实现统计信息化与数据安全建设的协调发展,提高数据安全识别、保密性的兼容和设防控制技术。一方面将网络安全技术与大数据技术相融合,确保统计平台的安全稳定运行。另一方面,统计组织体系、管理体系等方面也需要不断完善,最终共同构建一个安全保障体系,推进统计数据的存储与安全融合向更深层次发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13