智能建筑业真需要大数据
“三分技术,七分数据,得数据者得天下”。在大数据时代已经到来的时候,不少行业已经开始用大数据思维去发掘大数据的潜在价值。那作为传统行业的建筑业需要大数据吗?
所谓大数据思维,是要全部数据样本而不是抽样;关注效率而不是精确度;关注相关性而不是因果关系。
大数据并不在“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。大数据时代,建筑行业自然也不能置身度外。事实上,智能数据在国外已有不少应用,也推出了很多概念性的理念和产品。
在国外一些地区,建筑可以自行降低能耗,交通能够预测什么地方会有交通堵点等,这些都是大数据在行业的应用。
众人熟知的赌城,IT人士熟知的CES(美国消费电子展)所在地阿拉斯加就是数据之城。和大多数城市一样,赌城面临水电等市政管道因历史数据不准确而在施工中被挖断的威胁。
为此,利用智能数据开发了城市的市政基础设施网络仿真模型。帮助拉斯维加斯市整合来自各个数据源的数据,利用技术生成了一个三维实时模型,能够显示路面和地下的各种管线设施。
未来的智能建筑在某种程度上也是大数据的集成,是一个云计算大数据的应用中心,将来完全可以实现小到一个灯泡,大到整楼的安全、质量、环境,甚至到人的行为都可以通过楼宇的大数据系统来预测。
原本智能建筑只是监测、控制、报警,而无法预测分析现状和预测事故的发生,而当实现建筑的大数据分析时,则可实现预测、预警、规划和引导,使建筑设备安全使用,人的环境舒适度得到调整,人员的生活、工作都能得到方便智能的应用,并且还将这些大数据信息同时与个人的手机智能端相连,实现所有智能分析有用信息同步享有,即可作用。
现在有很多国外公司想进入国内做建筑行业的信息化,目前国内做得很有规模、很深入的公司也比较少,但是有很多企业也都想借大数据的和云计算这些新技术变革的机会努力做一些创新。
不过,据分析,对于建筑行业的大数据挖掘来说,存在天然的行业壁垒。
首先是数据维度比较复杂,简单来看,既有建筑类的数据:建筑造价类数据、建筑结构类数据、建筑施工工艺类数据、建筑材料类数据,还有管理类数据;
其次是中国的建筑的法律法规和对专业的要求跟国外不一样,中国的一个特点是各个省市的建筑行业法律法规都不一样。在这种情况下,建筑行业的大数据应用成了一个高门槛的行业。
虽然入门很难,但必须积极应对,因为大数据带给建筑业的积极影响将是难以想象的。以传统的建筑行业造价咨询公司为例,如果公司有100个造价人员,这个规模的公司至少有两人专门做询价,也就是找材料价格,而一个咨询公司的咨询师年成本大概是30万元,两个人就是60万元。
而从收集材料厂商数据的成本来看,收集一个厂商的信息,大约一年需要140元钱,而目前国内建筑材料生产厂商79万家,如果要把这79万家的材料信息收集回来,这个成本是巨大的。大数据的应用,不但可以大大节省人力成本,而且便于操作。
此外,大数据还将开启建筑能源管理新模式。
在建材领域,大数据或许可以预测水泥市场走势,有效化解产能过剩;在企业内部搭建平台,用于监控市场和作出决策;改变传统B2B,做到线上线下无缝对接;建设高度信息化的绿色建材产业园区,改变传统意义的建筑设计模式……
当下PC、平板电脑、智能手机等联网设备的快速发展,对当今和未来的科技和经济发展以及社会生产和生活带来重大影响。真正的大数据挖掘与应用,值得期待和深入探索。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22