大数据六大趋势
随着大数据的应用范围不断扩大,越来越多的公司开始部署大数据战略。同时,大数据技术也使得商业发展的速度更快、效率更高。通过大数据技术,企业可以更轻松地获取信息,以便进行更准确的决策。很多公司已经从大数据中获益,2017年大数据又将如何影响商业发展?
1随着数据量的不断增长,数据分析方法也将进一步提高。虽然SQL依然会是数据分析的标准方法,但是新兴分析工具也不可小觑。Spark是其中之一,它是大数据时代下的一个快速处理数据分析工作的框架,多家世界顶级的数据企业例如Google,Facebook等现已纷纷转向Spark框架。
2实时数据分析将获得更多关注
技术专家预测,2017年企业将需要实时数据分析工具,来帮助他们利用数据进行实时决策。实时计算一般都是针对海量数据进行的,一般要求为秒级。目前有几款数据分析工具可以提供实时访问数据,如GoogleAnalytics和Clicky。
3隐私问题将成最大挑战
高德纳资讯公司预测,到2018年,近50%的企业都将面临隐私泄露问题。事实上,欧盟实施新的隐私法规时,早已经预见到了这一点。大数据时代,解决用户隐私泄露问题,就是解决大数据发展与使用的问题。
4 人工智能将广泛应用
过去一年,我们亲眼见证了人工智能的爆发:无人驾驶汽车试驾成功、AlphaGo围棋获胜。随着人工智能技术日益成熟,未来公司企业将很大程度上依赖于这项技术。虚拟助手、机器人、智能顾问和自动驾驶汽车等多种技术都将得到广泛的应用。
5 认知技术将加速发展
认知技术是人工智能领域的产物,能完成以往只有人能够完成的任务。包括计算机视觉、机器学习、自然语言处理、机器人技术和语言识别技术等。
随着人工智能的发展,认知技术的重要性越来越受到人们的认可。只要人们认识到大数据和分析学之间的紧密联系,就会发现认知计算和分析学一样,都是企业发展不可或缺的技术。
6“大”数据将不复存在
大数据的发展面临共享难度大、垄断程度高、融合能力差、应用价值低以及安全风险大等一系列制约因素。因此一些专家认为,数据的“量”已经不再是数据的重点了。与其一味地追求数据量,还不如好好研究如何提高手头数据的利用效率。
大数据将被分割成数据块,这将打破行业领域对信息流动的限制,通过对不同类型、不同领域数据的跨界集聚,极大地改变信息的生产、传播、加工和组织方式,进而给各个行业的创新发展带来新的驱动力,推动各个领域的彻底变革和再造。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20