R语言并行计算的原理和案例
众所周知,在大数据时代R语言有两个弱项,其中一个就是只能使用单线程计算。但是R在2.14版本之后,R就内置了parallel包,强化了R的并行计算能力。
parallel包实际上整合了之前已经比较成熟的snow包和multicore包,multicore无法在windows下运行。parallel包可以很容易的在计算集群上实施并行计算,在多个CPU核心的单机上,也能发挥并行计算的功能。我们今天就来探索一下parallel包在多核心单机上的使用。
parallel包的思路和lapply函数很相似,都是将输入数据分割、计算、整合结果。只不过并行计算是用到了不同的cpu来运算。
这样的计算过程可以使用如下方式来表述:
1、启动M个附属进程,并初始化
2、针对于任务,为每个附属进程分发所有的数据
3、将任务粗略的分为M个块儿(chunks),并将这些块儿发送到附属进程(包含需要的R代码)
4、等待所有的附属进程完成计算任务,并返回结果
5、对于其他任务也同样重复2-4
6、关闭附属进程
在parallel包里,对应上述两种并行化方式有如下两个核心函数(针对于lapply函数的并行化,mclapply在windows上不能使用):
parLapply(cl, x, FUN, ...)
mclapply(X, FUN, ..., mc.cores)
案例1、不使用并行计算,直接使用lapply(隐式循环函数,它实际就是对不同的数据应用了相同的函数):
fun <- function(x){
return (x+1);
}
system.time({
res <- lapply(1:5000000, fun);
});
user system elapsed
21.42 1.74 25.70
案例2、使用parallel包来加速
library(parallel)
#打开四核,具体核数根据机器的核数决定
cl <- makeCluster(getOption("cl.cores", 4));
system.time({
res <- parLapply(cl, 1:5000000, fun)
});
user system elapsed
6.54 0.34 19.95
#关闭并行计算
stopCluster(cl);
看看单核机器跑出来的结果:
user system elapsed
29.30 9.23 97.22
所以,并非核数越多越好,看机器配置。
这个函数有两点要注意:
首先要先用detectCores函数确定系统核心数目,对于Window系统下的Intel I5或I7 处理器,一般使用detectCores(logical = F)来获得实际的物理核心数量。
由于这个函数使用的是调用Rscript的方式,这个例子里,对象被复制了三份,因此内存会吃的很厉害,在大数据条件就要小心使用。
案例3、在Linux下使用mclapply函数的效果如下:
mc <- getOption("mc.cores", 3)
system.time({
res <- mclapply(1:5000000, fun, mc.cores = mc);
});
user system elapsed
6.657 0.500 7.181
foreach包是revolutionanalytics公司贡献给R开源社区的一个包,它能使R中的并行计算更为方便。与sapply函数类似,foreach函数中的第一个参数是输入参数,%do%后面的对象表示运算函数,而.combine则表示运算结果的整合方式。 下面的例子即是用foreach来完成前面的同一个任务。如果要启用并行,则需要加载doParallel包,并将%do%改为%dopar%。这样一行代码就能方便的完成并行计算了。
案例4、foreach包的使用:
library(foreach)
# 非并行计算方式,类似于sapply函数的功能
x <- foreach(x=1:1000,.combine='rbind') %do% func(x)
# 启用parallel作为foreach并行计算的后端
library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)
# 并行计算方式
x <- foreach(x=1:1000,.combine='rbind') %dopar% func(x)
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10