R语言并行计算的原理和案例
众所周知,在大数据时代R语言有两个弱项,其中一个就是只能使用单线程计算。但是R在2.14版本之后,R就内置了parallel包,强化了R的并行计算能力。
parallel包实际上整合了之前已经比较成熟的snow包和multicore包,multicore无法在windows下运行。parallel包可以很容易的在计算集群上实施并行计算,在多个CPU核心的单机上,也能发挥并行计算的功能。我们今天就来探索一下parallel包在多核心单机上的使用。
parallel包的思路和lapply函数很相似,都是将输入数据分割、计算、整合结果。只不过并行计算是用到了不同的cpu来运算。
这样的计算过程可以使用如下方式来表述:
1、启动M个附属进程,并初始化
2、针对于任务,为每个附属进程分发所有的数据
3、将任务粗略的分为M个块儿(chunks),并将这些块儿发送到附属进程(包含需要的R代码)
4、等待所有的附属进程完成计算任务,并返回结果
5、对于其他任务也同样重复2-4
6、关闭附属进程
在parallel包里,对应上述两种并行化方式有如下两个核心函数(针对于lapply函数的并行化,mclapply在windows上不能使用):
parLapply(cl, x, FUN, ...)
mclapply(X, FUN, ..., mc.cores)
案例1、不使用并行计算,直接使用lapply(隐式循环函数,它实际就是对不同的数据应用了相同的函数):
fun <- function(x){
return (x+1);
}
system.time({
res <- lapply(1:5000000, fun);
});
user system elapsed
21.42 1.74 25.70
案例2、使用parallel包来加速
library(parallel)
#打开四核,具体核数根据机器的核数决定
cl <- makeCluster(getOption("cl.cores", 4));
system.time({
res <- parLapply(cl, 1:5000000, fun)
});
user system elapsed
6.54 0.34 19.95
#关闭并行计算
stopCluster(cl);
看看单核机器跑出来的结果:
user system elapsed
29.30 9.23 97.22
所以,并非核数越多越好,看机器配置。
这个函数有两点要注意:
首先要先用detectCores函数确定系统核心数目,对于Window系统下的Intel I5或I7 处理器,一般使用detectCores(logical = F)来获得实际的物理核心数量。
由于这个函数使用的是调用Rscript的方式,这个例子里,对象被复制了三份,因此内存会吃的很厉害,在大数据条件就要小心使用。
案例3、在Linux下使用mclapply函数的效果如下:
mc <- getOption("mc.cores", 3)
system.time({
res <- mclapply(1:5000000, fun, mc.cores = mc);
});
user system elapsed
6.657 0.500 7.181
foreach包是revolutionanalytics公司贡献给R开源社区的一个包,它能使R中的并行计算更为方便。与sapply函数类似,foreach函数中的第一个参数是输入参数,%do%后面的对象表示运算函数,而.combine则表示运算结果的整合方式。 下面的例子即是用foreach来完成前面的同一个任务。如果要启用并行,则需要加载doParallel包,并将%do%改为%dopar%。这样一行代码就能方便的完成并行计算了。
案例4、foreach包的使用:
library(foreach)
# 非并行计算方式,类似于sapply函数的功能
x <- foreach(x=1:1000,.combine='rbind') %do% func(x)
# 启用parallel作为foreach并行计算的后端
library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)
# 并行计算方式
x <- foreach(x=1:1000,.combine='rbind') %dopar% func(x)
stopCluster(cl)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29