浅谈风险指标及常用分析方法
风险指标及常用分析方法
一 风险产生的原因
最直接的原因都是因为借款人不还钱导致的。所以才会采用各种方法,国内5c,国内的周易识人术。。。吧啦吧啦等等吧。:)
二 风险管理的模块
三 风险分析—量化风险
对风险进行量化已经有比较成熟的体系,下面对常用到的指标进行说明
即期指标(coincidental),分母为当期金额,如当期应收账款。其概念为分析当期应收账款的质量结构。
递延指标(lagged),分母为之前的金额,如之前月份的应收账款。其概念为可以较为合理的反映数据状态。
四 风险分析—常用风险分析方法
进行任何分析前都要先进行问题界定。问题轮廓越清晰,分析方向越明确,越容易切中要害。下面列举常见的分类类型。
4.1 分析类型
在进行任何数据分析时,大多分析包含在如下四大类中:分布、变化、对比、预测。
4.1.1 分布
结构分析
累计分析
4.12 变化
趋势分析
账龄分析
vintage分析
4.1.3 对比(举例)
区域对比
同行竞争对手对比
4.1.4预测
见第五章
4.2 指标的选择
每一件事情的发生都有其前因后果,分析事情切忌从单方面切入。否则就是瞎子摸象,容易使决策发生错误。选择指标时关注如下重点,以厘清不同指标之间的关联,为报表使用者提供完整可靠的分析。
相对性
即事件的一体两面,若仅以一个指标骤下判断是非常危险的,例如核准率的上升相对地有可能会带动延滞率的提高。这两个指标代表业务的增长和风险的增长,两个对应指标应同时并列于报表中以供使用者权衡利弊。
比较性
实际值和预设值的比较。
互补性
某些指标若单独呈现,解释力过于薄弱,必须采用互补性质的指标进行补强。这种互补性常见于比率和绝对数字之间。
多面性
有时候单一指标所呈现的讯息,再以另一方面切入会产生完全不同的解释。例如某一产品核准率持续上升,在审核流程无重大变动情况下,表明进件质量良好。但若观察金额核准率指标后可能出现相反的走势,客户申请金额和核准金额存在明显差异,也就是说进件质量实际上并不如件数核准率所显示的那么乐观。
顺序性
有些指标有前后关系,若要清楚掌握整个事件的始末,就必须对这些指标做一系列的观察。比如进件量、核准量和放款量,这三个指标依序发生,彼此环环相扣,任一环节出现异常皆会影响最终结果。
层次性
类似OLAP分析中的下钻。
备注:联机分析处理(OLAP) 钻取表示可以改变维的层次,变换分析的粒度。
落差性
时间上的落差,一个指标数据出现后,另一个指标需要经过一段时间才会有所体现。因此需要同时列出观察期及反应期的数据,以便报表使用者解读。如核准后逾期的出现一般需要三到六个月的发酵时间。
4.3 常用分析维度
产品维度
种类、利率、额度……
客户维度
年龄、性别、学历、收入、行业、家庭成员……
信用维度
公司内部评分卡、外部数据评分、征信信息、贷还款记录……
行为维度
行为维度包括还款记录、还款形式(全额还清、本期循环等)等
通用数据维度
区域、城乡区别、账龄……
五 风险分析—常用风险预测方法
预测分析法分为定性法及定量法,前者较偏向主观经验判断,后者则侧重客观的计量方式。两者经常搭配使用。
5.1 关联推测法
待补充。。。
5.2 移动平均法
待补充。。。
5.3 指数平滑法
通过Excel就可以得到指数趋势的方程和图形。
5.4 线性回归法
通过Excel就可以得到线性回归的方程和图形。
5.5 对数趋势法
通过Excel就可以得到对数趋势的方程和图形。
5.6 多项式
后语:
风控指标的东西比较多,在实际的工作应用中和用法及数据分析上会采用不同的思路,最主要目的还是为了风控政策提供决策依据。
数据分析咨询请扫描二维码
技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27技术技能 - 编程技能 - 掌握SQL、Python、R语言等编程工具是基本要求,可用于数据提取、清洗和分析。 - 数据分析与建模技能 ...
2024-11-27财务数据分析职业展望 - 需求激增: 随着企业信息化和数字化进程的加速,财务数据产生和积累速度急剧增长,推动了财务数据分析需 ...
2024-11-27技术技能 数学与统计技能:数据分析师需要具备扎实的数学基础,包括统计学、概率论、多变量微积分和线性代数等知识,以帮助理 ...
2024-11-27选择适当的工具和软件 选择恰当的工具对于创建出色的数据分析图表至关重要。Excel提供强大的数据可视化功能,R语言的ggplot2包 ...
2024-11-27初级市场分析师在工作中面临着重要任务之一:评估竞争对手的表现。这项工作不仅有助于描绘行业竞争格局,还能帮助企业发现自身的 ...
2024-11-27基础知识的建立 要想在数据分析领域脱颖而出,首先需要打好坚实的基础。 数据分析的基础知识十分重要,其中包括统计学、概率论、 ...
2024-11-27# 要学习Python数据分析 掌握Python基础知识 - 首先需要掌握Python的基础知识,包括基本语法、数据结构(如列表、元组、字典等) ...
2024-11-27学数据分析能在什么单位工作 数据分析的就业领域概述 数据分析专业毕业生广泛应用于各行各业,包括但不限于以下单位: 政府机关 ...
2024-11-27想学数据分析需要学哪些课程 数据分析学习路径推荐 基础课程: 统计学: 统计学作为数据分析的基石,涵盖概率论、描述性统计、 ...
2024-11-27# 现在什么行业发展前景最好 **人工智能与机器学习** - 人工智能技术快速发展,广泛应用于智能家居、自动驾驶等领域。 - 具备巨 ...
2024-11-27# 未来最有前景的行业 **人工智能与机器学习** - 人工智能被认为是未来最具潜力的行业之一,其应用范围广泛,包括智能家居、医 ...
2024-11-27数据分析领域蓬勃发展,成为当今行业中备受追捧的职业之一。作为一个初入此领域的学习者,您可能会困惑于应该学习哪些课程才能打 ...
2024-11-27统计与大数据分析专业的就业前景非常广阔,随着数字化时代的到来,这一领域的专业人才需求量不断增加。以下是关于该专业就业前景 ...
2024-11-27数字经济作为全球经济的重要组成部分,正在迅速发展并深刻改变着经济结构和竞争格局。根据多项证据,数字经济的发展现状和趋势可 ...
2024-11-27数据运营是指通过收集、分析和利用大量数据,为企业决策和业务发展提供支持的工作。其核心任务包括数据的采集、整理、分析、挖掘 ...
2024-11-27数据建模是一种重要的技术,用于有效组织和记录系统数据,旨在满足特定业务需求并确保数据的准确性和一致性。这一过程通过抽象化 ...
2024-11-27《Python数据分析极简入门》 第2节 8-2 Pandas 数据重塑 - 数据堆叠 数据堆叠 df=pd.DataFrame({'专业':np.re ...
2024-11-27数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26