大数据就是占有数据?错!如何使用更重要
置身于互联网金融行业,人们讨论的焦点都绕不过这两个字。没有人会否认大数据对互联网金融企业的重要性,也没有人能否认,随着大数据时代进程的不断加快,传统的信贷、风控经验已经不适用于这个新的时代。如何把数据应用于实战?以及,如何在最大程度上挖掘出每个数据的价值?
在今年的博鳌论坛上,与会专家指出“金融科技未来五年发展的驱动力将从过去依赖渠道优势转向运用大数据和数据的分析处理、深度运算能力。”可以看出,对大数据的应用与挖掘将会成为互联网金融发展的方向。
那么,什么是大数据?
简单来说,大数据指的应该是数据很多,但为什么不叫“多数据”而叫做“大数据”?因为这个名称来自英文翻译“Big Data”。从根本上来说,简单地使很多数据堆积在一起不叫大数据。大数据主要表示一种技术手段,来使得数据的存取、分析可以非常高效的进行。
大数据在信贷风险管理中的作用
拥有大数据只是基础,如何将大数据应用于信贷风险管理工作中才是目标。由于网络借贷和传统金融面对的受众区别,借款人主要来自线上,考虑到目前网络犯罪的试错成本比较低,网络借贷平台上的借款人可能存在欺诈和骗贷行为风险。因此借贷反欺诈的重点在于从潜在借款人当中,准确识别出真正有还款意愿的借款人。
通过技术的防范手段很多元化,一般通过核实手机号、身份证号码、电脑唯一设备号、手机唯一设备号,可以进行下列过滤识别手段:交叉比对借款人登记的住家地址、公司地址,以及申请人当时申请的定位地点,如果差距超过10公里,风险系数极高;某些地址或大楼,属于申请诈骗高发地址的,风险系数偏高,会得到一个分值;发现和多个平台同时存在借款记录的,风险系数偏高;手机号属于法院黑名单、租车黑名单、使用时间段不足6个月、被多次标记恶意骚扰电话等,风险系数偏高;6个月内,同一个手机设备号,曾经在银行、小贷公司、多家P2P平台有过多次申请记录的,风险系数极高;手机设备号近一天关联申请人3个手机号以上的,风险系数极高;手机号与设备是否匹配、第一次激活时间距离申请贷款时间较近,风险系数较高。
构建基于场景的数据风险管理体系
通过建设交易借贷的场景一体化,是目前各大互联网金融平台和传统金融机构进行错位竞争的舞台。其中由于借款人是直接通过信用借贷行为取得所想要的产品或服务,套现诈骗风险相对较低,金额一般也较小,各大平台借鉴着灵活的体系和快速执行力,纷纷投入精力设计各种低风险、场景化的金融应用服务,并不断持续优化客户体验。
不过考虑到每个场景设定的不同,对应的风控要素自然也不同,最理想的互联网金融平台模式,会建立数十种不同的场景化金融,针对每个场景定义出不同的风控要素、准入条件和禁入人群、利率定价、还款周期,等等。
从实操的角度来说,第一步应该是在每一个风控场景,由风控人员和技术人员设定出精密的各种金融要素条件,第二步是尽量善用外部数据源来辅助,能真正体现每一个互联网金融平台的产品设计和风控水平。
大数据在获客和客户价值挖掘上的应用
如果可以通过大数据角度来看,通过身份证号、手机号进行客户画像描绘后,可能分析出来这个客户经常关注互联网理财,经常频繁使用各种股票和银行APP,较高频次的国内和国际航空记录。这个时候分析出来的结果反而可能是高净值客户。通过大数据可以帮助金融机构和互联网金融平台把客户画像描绘得更加完整。这样一来,结合了原先的传统情景和大数据分析后的场景,金融机构和互联网金融平台的决策就会截然不同。这个客户虽然在银行或互联网金融平台暂时是一个低价值客户,但实质上是一个高净值客户,可以通过适当推送的产品组合,并结合电话销售,推荐适合的金融产品或服务,例如全家海外旅游分期贷款,或者短期高收益的金融产品。这也是通过大数据分析能改变传统获客和客户挖掘交叉营销的模式。
同时,通过算法的分析和训练,可以建立现有用户的群组,分析出一群比较相似的人,推荐一些他们经常会选择的东西,根据这些信息可以去推荐相应的金融产品或服务,一方面让客户觉得不会被过度干扰,进而提升接受度和转化率。从智能推荐的角度,可利用不同的标签参数、ID的参数等完成推荐的工作。ID在整个数字营销领域是非常关键的一件事情,需要知道这是同一个人,才会有意义,不然所有营销的工作都是分散、割裂的,对整体的营销效果并不会很好。
大数据在金融行业的广泛应用和快速发展正引领和推动社会逐步走向数据化时代。大数据与金融的深度融合,对互联网金融企业的创新发展、转型升级具有十分重要的意义。在此大环境下,汇中网基于大数据、区块链等先进金融科技建立网贷信息中介平台,以合规的模式和更高级别的信息安全防护,打造成坚固的堡垒,让客户的利益得到高层次的保障。未来,汇中网将会一直围绕互联网金融创新手段,利用大数据等先进技术为用户提供更专业的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29