大数据就是占有数据?错!如何使用更重要
置身于互联网金融行业,人们讨论的焦点都绕不过这两个字。没有人会否认大数据对互联网金融企业的重要性,也没有人能否认,随着大数据时代进程的不断加快,传统的信贷、风控经验已经不适用于这个新的时代。如何把数据应用于实战?以及,如何在最大程度上挖掘出每个数据的价值?
在今年的博鳌论坛上,与会专家指出“金融科技未来五年发展的驱动力将从过去依赖渠道优势转向运用大数据和数据的分析处理、深度运算能力。”可以看出,对大数据的应用与挖掘将会成为互联网金融发展的方向。
那么,什么是大数据?
简单来说,大数据指的应该是数据很多,但为什么不叫“多数据”而叫做“大数据”?因为这个名称来自英文翻译“Big Data”。从根本上来说,简单地使很多数据堆积在一起不叫大数据。大数据主要表示一种技术手段,来使得数据的存取、分析可以非常高效的进行。
大数据在信贷风险管理中的作用
拥有大数据只是基础,如何将大数据应用于信贷风险管理工作中才是目标。由于网络借贷和传统金融面对的受众区别,借款人主要来自线上,考虑到目前网络犯罪的试错成本比较低,网络借贷平台上的借款人可能存在欺诈和骗贷行为风险。因此借贷反欺诈的重点在于从潜在借款人当中,准确识别出真正有还款意愿的借款人。
通过技术的防范手段很多元化,一般通过核实手机号、身份证号码、电脑唯一设备号、手机唯一设备号,可以进行下列过滤识别手段:交叉比对借款人登记的住家地址、公司地址,以及申请人当时申请的定位地点,如果差距超过10公里,风险系数极高;某些地址或大楼,属于申请诈骗高发地址的,风险系数偏高,会得到一个分值;发现和多个平台同时存在借款记录的,风险系数偏高;手机号属于法院黑名单、租车黑名单、使用时间段不足6个月、被多次标记恶意骚扰电话等,风险系数偏高;6个月内,同一个手机设备号,曾经在银行、小贷公司、多家P2P平台有过多次申请记录的,风险系数极高;手机设备号近一天关联申请人3个手机号以上的,风险系数极高;手机号与设备是否匹配、第一次激活时间距离申请贷款时间较近,风险系数较高。
构建基于场景的数据风险管理体系
通过建设交易借贷的场景一体化,是目前各大互联网金融平台和传统金融机构进行错位竞争的舞台。其中由于借款人是直接通过信用借贷行为取得所想要的产品或服务,套现诈骗风险相对较低,金额一般也较小,各大平台借鉴着灵活的体系和快速执行力,纷纷投入精力设计各种低风险、场景化的金融应用服务,并不断持续优化客户体验。
不过考虑到每个场景设定的不同,对应的风控要素自然也不同,最理想的互联网金融平台模式,会建立数十种不同的场景化金融,针对每个场景定义出不同的风控要素、准入条件和禁入人群、利率定价、还款周期,等等。
从实操的角度来说,第一步应该是在每一个风控场景,由风控人员和技术人员设定出精密的各种金融要素条件,第二步是尽量善用外部数据源来辅助,能真正体现每一个互联网金融平台的产品设计和风控水平。
大数据在获客和客户价值挖掘上的应用
如果可以通过大数据角度来看,通过身份证号、手机号进行客户画像描绘后,可能分析出来这个客户经常关注互联网理财,经常频繁使用各种股票和银行APP,较高频次的国内和国际航空记录。这个时候分析出来的结果反而可能是高净值客户。通过大数据可以帮助金融机构和互联网金融平台把客户画像描绘得更加完整。这样一来,结合了原先的传统情景和大数据分析后的场景,金融机构和互联网金融平台的决策就会截然不同。这个客户虽然在银行或互联网金融平台暂时是一个低价值客户,但实质上是一个高净值客户,可以通过适当推送的产品组合,并结合电话销售,推荐适合的金融产品或服务,例如全家海外旅游分期贷款,或者短期高收益的金融产品。这也是通过大数据分析能改变传统获客和客户挖掘交叉营销的模式。
同时,通过算法的分析和训练,可以建立现有用户的群组,分析出一群比较相似的人,推荐一些他们经常会选择的东西,根据这些信息可以去推荐相应的金融产品或服务,一方面让客户觉得不会被过度干扰,进而提升接受度和转化率。从智能推荐的角度,可利用不同的标签参数、ID的参数等完成推荐的工作。ID在整个数字营销领域是非常关键的一件事情,需要知道这是同一个人,才会有意义,不然所有营销的工作都是分散、割裂的,对整体的营销效果并不会很好。
大数据在金融行业的广泛应用和快速发展正引领和推动社会逐步走向数据化时代。大数据与金融的深度融合,对互联网金融企业的创新发展、转型升级具有十分重要的意义。在此大环境下,汇中网基于大数据、区块链等先进金融科技建立网贷信息中介平台,以合规的模式和更高级别的信息安全防护,打造成坚固的堡垒,让客户的利益得到高层次的保障。未来,汇中网将会一直围绕互联网金融创新手段,利用大数据等先进技术为用户提供更专业的服务。
数据分析咨询请扫描二维码
了解数据的本质:描述性统计 描述性统计是数据分析中的基石,通过各种统计量揭示数据的基本特征。从均值、中位数到标准差和四分 ...
2024-12-04在当今数字化时代,数据被认为是企业最宝贵的资产之一。然而,有效管理和利用数据并非易事,需要综合的战略规划、治理机制以及技 ...
2024-12-04在当今信息爆炸的时代,提升数据分析能力变得至关重要。幸运的是,网络上提供了丰富多样的学习资源,涵盖了从基础到高级的学习路 ...
2024-12-04在当今数字化时代,数据成为了企业决策和发展的关键驱动力。成为一名优秀的数据分析师不仅意味着掌握技术工具,更需要培养出色的 ...
2024-12-04在当今信息爆炸的时代,数据分析技能变得至关重要。无论你是业务人员、学者还是从事科研工作,掌握数据分析能力都能让你在竞争激 ...
2024-12-04在当今信息爆炸的时代,数据被认为是企业的黄金。然而,仅有大量数据并不足以推动业务成功,关键在于有效地管理和利用这些数据。 ...
2024-12-04欢迎来到数据分析的世界!作为一位初学者,您可能会陷入混乱之中,试图理清诸多概念和工具。本指南将带领您穿越这片知识海洋,探 ...
2024-12-04随着数据在商业和科学领域的广泛应用,数据分析师的需求日益增长。对于初学者而言,打造实战能力至关重要。让我们探索如何通过系 ...
2024-12-04编程与数据分析结合的课程 有一定编程基础的学习者可以选择中国大学MOOC的"Python数据分析与展示"和飞桨AI Studio的"Python数 ...
2024-12-04在当今信息爆炸的时代,数据扮演着至关重要的角色。掌握数据分析技能不仅是一种趋势,更是保持竞争优势的关键。为了帮助您拓展数 ...
2024-12-04探索数据分析的学习路径 数据分析不仅仅是一门技能,更是一种思维方式,让我们一起探索如何从一个初学者逐步成长为数据分析领域 ...
2024-12-04城市需求概况 数据分析师在不同城市间的需求差异显著,主要聚焦于一线及部分新一线城市。以下是详细的分析: 主要需求城市: ...
2024-12-04培养数据感知能力与深刻理解 数据分析师的关键能力之一是培养敏锐的数据感知能力。通过持续的数据探索和可视化分析,我们不仅可 ...
2024-12-04作为一名数据分析师,熟练掌握各种数据库课程对于提升竞争力和专业能力至关重要。本文将深入探讨数据分析师需要学习的主要数据库 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着关键角色。他们需要熟练掌握各种工具,以有效处理和分析数据,为业务决策提供支持。让 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要不断提升自身技能以适应快速发展的数据科学领域。本文将探讨 ...
2024-12-04在当今数据驱动的世界中,数据分析已成为各行各业的核心。要成为一名优秀的数据分析师,熟练掌握多种编程语言至关重要。不同的编 ...
2024-12-04在当今信息爆炸的时代,数据分析师扮演着关键的角色,他们需要运用多种数据处理技术来从海量数据中提炼出有意义的见解。本文将探 ...
2024-12-04数据分析师薪资概况 数据分析师的薪资水平受地区、行业和经验等因素影响,呈现明显差异。总体来看,数据分析师在薪资待遇上较为 ...
2024-12-04数据分析领域日益受到关注,数据驱动决策已成为企业核心。随着数据需求增长,数据分析师的地位也日益重要。成功在这个领域立足, ...
2024-12-04