“互联网金融+大数据+征信”如何运转
随着P2P监管的加强,前两年热炒的互联网金融逐渐冷却。人们开始回归理性,重新审视这个“新事物”。越来越多的人开始认可互联网金融的金融本质。
从前年底开始,征信仿佛一夜之间进入到人们的视野。从第一批个人征信牌照的发放在即,到企业征信备案的收紧,征信成了金融圈2015年一个新的热点。更有很多人认为,征信将撬动一个新的万亿市场。
大数据,依然在升温,2015年的9月更是达到了一个新的高度,上升为国家战略,一时间威风八面。很多事情如果不沾上大数据的光,都不好意思出来说。
不知道什么时候,有聪明人将两个热点合二为一,产生了“大数据征信”的名词,并讯速地将其推广。互联网金融、大数据征信于是就成了2015年最亮丽的风景。
然而,互联网金融的本质是金融,那么互联网给金融带来了什么?互联网金融与传统金融有什么区别?征信,真的需要大数据吗?大数据在征信里到底起了什么作用?
1. 什么是互联网金融
越来越多的人认识到互联网金融的本质是金融,这很好,说明大家都明白起码互联网金融不等于P2P。但是在互联网金融里的“互联网“又是什么呢?它与传统金融最根本的区别在于什么?
个人认为,互联网金融跟传统金融还是有一些本质的区别。它并不是一个简单地衍生品,而是一次革命!虽然我也同意互联网金融的本质还是金融,但互联网金融是金融的互联网化。
金融的互联网化,再具体地说,就是金融的碎片化,金融的精细化,便捷化。这,才是互联网金融的核心。
如果你简单认为余额宝当年的那一场绚丽的演出只为业界带来了P2P的模式,那就太浅薄了。P2P只是表象,余额宝最大的贡献是开启了金融产品互联网化大幕!
众所周知,我国是银行大国,而非金融大国。金融产品匮乏,缺乏细分,新产品开发的周期过于缓慢。(这里的金融产品并非指理财产品。)造成这种现状的原因,就不说了,向前看。
互联网金融带给大家的是快捷的市场反应,丰富的细分产品。这也是未来银行所必须具备的能力。在我的另一篇文章中《大转折,新金融》阐述了这是一次大的转折,也必将显露出很多巨大的商机。在这次转折过程中,互联网为金融的变革做好了外围环境条件的准备。这个准备,就是大数据,就是征信。
2. 大数据
随着越来越多的人关注大数据,大数据也被越来越多的人误解,滥用。其实大数据是一个特指,并不是数据多到一定程度就是大数据了,更不是有数据就是大数据。
我们现在称“大数据”一般是指两个概念,一个是来自于互联网的海量数据,其特点是海量、维度多,非结构化和结构化数据并存;另一个是对海量数据的处理技术。因为依靠传统的数据处理技术,无法满足对海量数据秒级快速处理的需求(应用的需求,亚马逊、LinkedIn是代表),所以必须要有一种新的针对这一需求的处理技术,我们称之为大数据技术。大数据技术是一个体系,与话题无关,这里不再展开。
大数据最根本的作用也随之有两个,了解你的客户和在一些领域引入新的数据处理办法。
目前第一个“大数据”的含义已经被扩展,跨越了互联网的界限,引入了行业的数据。通过将不同渠道,不同维度的数据打通,你将可以非常清晰地勾勒出你的用户的画像。数据的丰富达到了基本完整的程度,使得我们对用户的了解,从简单的特征标签升华到了对用户的画像。这个升华就使大数据从一个可有可无的“玩具”,变成了一个很行之有效的工具。基于对用户的画像,你就可以更好地为客户提供差异化的服务;就可以更好地了解客户,从而为其提供更精准更高级的无抵押信用贷款。
另一方面,大数据的处理技术也有可能在一些传统的金融领域,尤其是风控领域发挥作用。传统的金融风控是建立在统计学的基础上,它需要依赖大样本的分析,计算的是一个概率。而现在我们经常面临的最大难题,就在于缺乏这个大样本,因为我们需要精细化和更快地响应市场。积累大样本需要时间和金钱,这显然不适应市场发展的需要。大数据的某些技术,本身就不是建立在统计学的基础上,有可能在缺乏样本的领域里发挥作用。比如,机器学习技术,被应用于反欺诈领域,就可以在缺乏样本的情况下,更为快速地发现早期异常行为。当然,并不是说大数据完全不需要数据的训练,只是可能可以在缺乏大样本数据环境的情况下,利用其他数据来弥补缺乏数据的不足,不失是一个新的手段。
无论是大数据,还是大数据的处理技术,都直接或者间接地指向了一个环节,征信。
3. 征信
现在很多人一提征信总喜欢加一个修饰词,“大数据征信”。仿佛担心如果不加上“大数据”份量就不够。
征信就是征信,是一门严谨的金融科学。是为金融风控过程中揭示金融风险而设。传统征信是建立在信贷历史记录的基础上,利用统计学的模型来展开的。虽然ZestFinance提出了大数据的征信方法,但迄今为止,还没有一个令人信服的数据表明,这一方法是行之有效的,是成熟的。所以,我们依然只能沿用传统的征信办法。
究其根本,个人认为,虽然大数据可以掌握一个用户很多方面的信息,但是只有金融属性的数据,对用户的金融行为判断才会有意义。从另一个角度来讲,用户的其他行为对金融行为的影响,都可以从具有金融属性的数据中表现出来,万变不离其宗。
貌似跟我上面的观点有冲突,其实不然。正是因为互联网金融需要更快,更精细的金融产品,所以,传统的征信不足以满足这一需求。因为暂时还没有足够的样本来揭示风险。那么这时,大数据就派上用场了。在大数据描绘的有些特定场景下,即便缺乏一些样本数据,无“经验”可参考,金融风险也是可控的。这才是大数据在金融领域的价值。而并非大数据征信是传统征信的替代品。不排除未来将大数据、大数据处理技术和金融的场景结合,可能会寻找到一条新的道路,但至少在今天,大数据和大数据处理技术在金融领域还只是有益的补充。
大数据确实可以为金融行业带来很多变化,也为金融的互联网化,碎片化,提供了保障。虽然,大数据在今天,在金融领域还是补充,但相信在未来的日子里,它将进一步渗透,走出一条创新的路。征信将融入大数据进一步细分,场景化的征信会更适合新市场的需求。这是我看到的大数据-征信-互联网金融的关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29