未来数据分析用户互动的三种方式
随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
2000年,彼得·莱曼(Peter Lyman)和哈尔·瓦里安(HalR. Varian)开展了一项史无前例的研究。用计算机存储术语来说,他们的目标是弄清楚全球每年产生多少原始数据。他们发现,在1999年,全球产生了大约1.5EB(相当于15亿GB)的非重复原始数据。
18年后的今天,我们正身处于数据爆炸的时代。现在,仅仅一天产生的数据量就可以轻松超过那个数字。据IBM表示,现在每天产生的数据量为25亿GB,而且这种增长趋势没有表现出放缓的迹象。
组织机构正在以越来越具有创造力的方式应对这股数据洪流。美国宇航局(NASA)最近宣布,依靠其庞大的“经验教训”(Lessons Learned)数据库来规划以后的项目和太空探索。这个数据库收集了以前发射任务的经验教训。
这种对此类“大”数据的依赖在其他很多行业里也有所体现。IBM分析了世界卫生组织的数据,以弄清楚当地气候和气温如何影响疟疾的传播;Mt. Hood Meadows滑雪度假村把追踪器嵌入缆车票,好帮助他们了解哪些缆车道和滑雪道在什么时段最受欢迎,以便减少排队等候时间。
这一切还不包括消费者和企业每天在不知不觉中使用的众多算法,比如Facebook上的社交媒体信息和众所周知又莫测高深的谷歌网页排名算法。
对数据的这些创新应用引发了一个疑问:大数据还有哪些发展前景?随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
以下是大数据可能在未来改善企业与客户互动的几种方式。
1.个性化
当顾客来买东西的时候,本地店主和杂货商记得顾客姓名,并向他们的家人问好,这样的事情在以前并不罕见。但现在,由于企业与客户的很多互动都发生在网上,零售顾客可能觉得那种人情味已经消失了。
考虑到竞争如此激烈,这种人情味的缺失会让企业很难吸引和留住顾客。在不可能创造面对面机会的情况下,个性化的靶向营销却为数字化人情关系的建立创造了条件。Netflix就是这方面的一个成功例子。该公司成功发挥了大数据的潜力,通过分析用户的观影习惯,向他们提供合理的观影推荐。
我们有很大可能看到大数据在个性化方面的更多应用。近年来,我们已经看到社交聆听工具(用于监查社交媒体上的相关对话)的应用日益增多,这类工具让企业可以在一定程度上衡量消费者行为,但仅仅知道他们的赞、踩和行为动机,还不足以让企业真正了解他们的顾客。
而大数据分析超越了这种局限,能够分析顾客的整个数字足迹,让企业完全洞察顾客的兴趣、活动和未来行为。现在,先进的大数据和文本分析使企业可以从非结构化数据中获取有价值的信息,弄清楚消费者喜欢什么,热衷什么,希望通过什么方式进行交流,即将参加什么活动,和谁在一起。
企业不仅能知道某人对体育运动感兴趣,还能知道他喜欢橄榄球,支持德克萨斯长角牛队,家里的儿子即将毕业。这有助于企业进行个性化的营销宣传,为长期、可持续的客户关系奠定基础,这比地毯式营销和人口统计定向营销更加有效得多。
2.身份验证
按照联合国贸易和发展会议的说法,从2013年到2018年,全球网上购物者的数量预计将增长五成。随着网购活动的日益增多,人们也越来越需要严格的身份验证。游戏、零售和饮食等行业纷纷在网上销售有年龄限制的产品,但其中很多企业并没有完善的身份验证流程。
LexisNexis Risk Solutions近期对200名电商高管的调查显示,超过61%的受访者采用的方式都是自行验证,通过勾选框或者输入生日日期来验证用户的年龄。
对很多行业来说,缺乏严格的身份验证是个实实在在的问题。年龄限制对游戏行业的影响尤其大。然而,要在易用性和高效的身份验证流程之间取得平衡却很难。可想而知,企业希望能让线上购买产品或注册服务的流程尽可能地简单高效。
这就是大数据的用武之地。虽然用户很容易创建虚假的电子邮件地址或账户,但几乎不可能伪造一个全面、活跃且互相关联的数字化存在。现在,很多顾客都拥有自己的网络生活,企业很可能会与顾客合作,从而充分利用这一点。大数据分析工具让企业能够评估一名顾客的数据质量与数量,确保数据的一致性、价值性和真实性。对大数据的这种应用能够帮助验证顾客的真实身份,又不用在易用性上作出让步。
3.欺诈预防
与零售和游戏行业一样,金融业也可以利用大数据分析工具来避免身份欺诈,同时令消费者的旅程变得更加轻松省心。一般来说,通过身份验证避免欺诈的流程非常耗时,像申请贷款或者建立银行账户时,就经常要求消费者提供水电费账单或者披露个人资料。
在这方面,大数据能够帮上忙。企业不再要求顾客自证身份,而是利用大数据分析工具,为消费者提供方便,同时避免欺诈。这些工具让银行等企业可以分析线上现成的个人数据,对照已知欺诈邮件清单进行审查。一切均在后台实时完成,这意味着不会干扰到客户体验。
随着大数据行业的发展,很可能将有更多的企业利用数字足迹的威力。由此产生的结果是,数据分析将在企业与消费者的更多互动中发挥作用。
工程和医疗领域的大数据创新层出不穷,企业利用这些工具来强化与客户的关系,似乎也就变得理所当然。只要这能带来更有价值的互动、更高效的消费者旅程和更高的品牌忠诚度,这就必定是一件好事。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21