未来数据分析用户互动的三种方式
随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
2000年,彼得·莱曼(Peter Lyman)和哈尔·瓦里安(HalR. Varian)开展了一项史无前例的研究。用计算机存储术语来说,他们的目标是弄清楚全球每年产生多少原始数据。他们发现,在1999年,全球产生了大约1.5EB(相当于15亿GB)的非重复原始数据。
18年后的今天,我们正身处于数据爆炸的时代。现在,仅仅一天产生的数据量就可以轻松超过那个数字。据IBM表示,现在每天产生的数据量为25亿GB,而且这种增长趋势没有表现出放缓的迹象。
组织机构正在以越来越具有创造力的方式应对这股数据洪流。美国宇航局(NASA)最近宣布,依靠其庞大的“经验教训”(Lessons Learned)数据库来规划以后的项目和太空探索。这个数据库收集了以前发射任务的经验教训。
这种对此类“大”数据的依赖在其他很多行业里也有所体现。IBM分析了世界卫生组织的数据,以弄清楚当地气候和气温如何影响疟疾的传播;Mt. Hood Meadows滑雪度假村把追踪器嵌入缆车票,好帮助他们了解哪些缆车道和滑雪道在什么时段最受欢迎,以便减少排队等候时间。
这一切还不包括消费者和企业每天在不知不觉中使用的众多算法,比如Facebook上的社交媒体信息和众所周知又莫测高深的谷歌网页排名算法。
对数据的这些创新应用引发了一个疑问:大数据还有哪些发展前景?随着时间推移,将会创造出更多的数据并加以使用,大数据的应用范围将从单纯的工程和软件开发领域,逐渐扩大到其他领域,帮助我们简化流程、改善客户服务和计算风险。
以下是大数据可能在未来改善企业与客户互动的几种方式。
1.个性化
当顾客来买东西的时候,本地店主和杂货商记得顾客姓名,并向他们的家人问好,这样的事情在以前并不罕见。但现在,由于企业与客户的很多互动都发生在网上,零售顾客可能觉得那种人情味已经消失了。
考虑到竞争如此激烈,这种人情味的缺失会让企业很难吸引和留住顾客。在不可能创造面对面机会的情况下,个性化的靶向营销却为数字化人情关系的建立创造了条件。Netflix就是这方面的一个成功例子。该公司成功发挥了大数据的潜力,通过分析用户的观影习惯,向他们提供合理的观影推荐。
我们有很大可能看到大数据在个性化方面的更多应用。近年来,我们已经看到社交聆听工具(用于监查社交媒体上的相关对话)的应用日益增多,这类工具让企业可以在一定程度上衡量消费者行为,但仅仅知道他们的赞、踩和行为动机,还不足以让企业真正了解他们的顾客。
而大数据分析超越了这种局限,能够分析顾客的整个数字足迹,让企业完全洞察顾客的兴趣、活动和未来行为。现在,先进的大数据和文本分析使企业可以从非结构化数据中获取有价值的信息,弄清楚消费者喜欢什么,热衷什么,希望通过什么方式进行交流,即将参加什么活动,和谁在一起。
企业不仅能知道某人对体育运动感兴趣,还能知道他喜欢橄榄球,支持德克萨斯长角牛队,家里的儿子即将毕业。这有助于企业进行个性化的营销宣传,为长期、可持续的客户关系奠定基础,这比地毯式营销和人口统计定向营销更加有效得多。
2.身份验证
按照联合国贸易和发展会议的说法,从2013年到2018年,全球网上购物者的数量预计将增长五成。随着网购活动的日益增多,人们也越来越需要严格的身份验证。游戏、零售和饮食等行业纷纷在网上销售有年龄限制的产品,但其中很多企业并没有完善的身份验证流程。
LexisNexis Risk Solutions近期对200名电商高管的调查显示,超过61%的受访者采用的方式都是自行验证,通过勾选框或者输入生日日期来验证用户的年龄。
对很多行业来说,缺乏严格的身份验证是个实实在在的问题。年龄限制对游戏行业的影响尤其大。然而,要在易用性和高效的身份验证流程之间取得平衡却很难。可想而知,企业希望能让线上购买产品或注册服务的流程尽可能地简单高效。
这就是大数据的用武之地。虽然用户很容易创建虚假的电子邮件地址或账户,但几乎不可能伪造一个全面、活跃且互相关联的数字化存在。现在,很多顾客都拥有自己的网络生活,企业很可能会与顾客合作,从而充分利用这一点。大数据分析工具让企业能够评估一名顾客的数据质量与数量,确保数据的一致性、价值性和真实性。对大数据的这种应用能够帮助验证顾客的真实身份,又不用在易用性上作出让步。
3.欺诈预防
与零售和游戏行业一样,金融业也可以利用大数据分析工具来避免身份欺诈,同时令消费者的旅程变得更加轻松省心。一般来说,通过身份验证避免欺诈的流程非常耗时,像申请贷款或者建立银行账户时,就经常要求消费者提供水电费账单或者披露个人资料。
在这方面,大数据能够帮上忙。企业不再要求顾客自证身份,而是利用大数据分析工具,为消费者提供方便,同时避免欺诈。这些工具让银行等企业可以分析线上现成的个人数据,对照已知欺诈邮件清单进行审查。一切均在后台实时完成,这意味着不会干扰到客户体验。
随着大数据行业的发展,很可能将有更多的企业利用数字足迹的威力。由此产生的结果是,数据分析将在企业与消费者的更多互动中发挥作用。
工程和医疗领域的大数据创新层出不穷,企业利用这些工具来强化与客户的关系,似乎也就变得理所当然。只要这能带来更有价值的互动、更高效的消费者旅程和更高的品牌忠诚度,这就必定是一件好事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24