充分挖掘司法大数据的超凡价值
司法大数据不仅可以成为法官公正司法的“校准器”,还可以成为观察经济发展的“晴雨表”,成为推动社会治理的“方向标”,成为人民群众规范行为的“指南针”。
说到司法大数据,我们首先想到的是全国法院一年受理案件的总数。以2016年为例,全国法院受理案件接近2000万件。其中,最高人民法院受理案件15985件,审结14135件;地方各级人民法院受理案件1951.1万件,审结、执结1671.4万件,结案标的额4万亿元。需要特别说明的是,按照公认的大数据定义,这些数据还不能称为司法大数据,仅仅是一些重要和宏观的司法数据。因为,它们还没有经过加工分析,没有经过结构化改造,所能够提供给我们的信息还十分有限,数据背后的信息还没有被充分地挖掘出来,因此也就无法被有效地使用。
的确,大数据不仅仅表现为数据的规模之大,更代表着数据处理所需的以人工智能为代表的新技术和新方法,代表着从海量的数据中找到过去不容易昭示的经验、规律和预测,代表着大数据分析和应用所带来的新创造、新服务和新机遇。没有分析加工提炼的数据,无论其数量有多么庞大、构成多么复杂,都不能称之为大数据。只有通过对数据的大量输入并加上复杂运算,让数据不断产生又不断拆分、整合,融合生成新的产品,然后输出、使用,才能形成“数据生产信息,信息改善决策”。这正是大数据发挥作用的基本原理。也就是说,大数据之所以能够带来神机妙算般的超凡价值,关键在于对数据的分析、挖掘、加工、提炼,能够从海量的数据中分析和提取出有规律的信息,能够对未来趋势进行预测的信息,进而影响和改善我们的决策。司法数据相当于生产资料,互联网相当于基础设施,云计算相当于生产工具,三者共同组成了信息时代的司法大数据。
如何适应互联网信息技术发展带来的机遇,充分挖掘司法大数据可能具有的超凡价值,是加强司法大数据研究与应用的重大课题,也是周强院长交给各级人民法院的一项重要工作任务。党的十八以来,在周强院长大力倡导和推动下,人民法院的信息化建设取得飞速进展。经过短短几年努力,从立案、审判到执行的全流程,最高人民法院已经搭建起了大数据管理和服务平台,实现了全国法院网络和信息基础设施全覆盖,全国3519个法院和9279个人民法庭通过专网实现互联互通。现在,各级法院正以每5分钟一次的频率向大数据管理和服务平台自动汇聚新收集的各类案件数据。目前,平台已经汇集了1亿多件案件数据和2900多万份裁判文书。面对呈指数增长的司法数据,初步实现了数据的“收集、保存、管理”。下一步,要在数据的“复杂运算”方面下大功夫,实现数据的“分析和共享”。
我们注意到,一些地方对司法大数据的研究与应用已经取得了不少可喜的成绩。比如,通过网络审判辅助系统分析案件的全部电子卷宗材料,自动为办案法官推送直接相关的法律法规、指导性或参考性案例等各类型法律文献,为法官提供智力支持;通过信息化实现资源共享,为不同法院审理同类案件提供大致统一的裁判尺度,避免同案不同判和法律适用不统一的问题;通过现代信息技术手段,缩减办案和执行期限,提高整体办案效率;通过网络流程再造,实现对办案工作的自动预警和智能监督。但总体上看,对大数据的收集、研究与应用还处在一个比较粗浅的层面上,司法大数据可能具有的超凡价值远远没有得到挖掘。
大数据的世界是现实的,也是超现实的;是过去的,更是面向未来的。通过数据的不断交换与交流,通过数据以及数据的不断使用,通过人工智能的复杂运算,带来的是更多源源不断并及时更新的新数据,展示出的是一个更清晰、更量化的经验世界,可以为人们的决策提供更值得借鉴的参照。未来,通过不断升级的人工智能和智慧法院建设,人们甚至可以顺利实现对诉讼结果的预测。这正是周强院长推动成立司法大数据专门研究与开发机构的要义。因为,司法大数据不仅可以成为法官公正司法的“校准器”,还可以成为观察经济发展的“晴雨表”,成为推动社会治理的“方向标”,成为人民群众规范行为的“指南针”。为此,周强院长要求以建设智慧法院为目标,充分利用人民法院丰富的案例资源,加强数据化分析等系统的开发和运用,更好地服务审判执行,服务人民群众多元司法需求,服务经济社会发展。
随着大数据日益转化成为国家基础性战略资源,拥有司法数据的规模以及分析解释运用这些数据的能力,也必将成为人民法院综合能力的重要组成部分。我们期待能够建立起司法大数据的全套指数系统,不仅为法院系统服务、为法官公正司法服务,还可以用司法大数据为国家治理现代化提供基础数据和决策支撑,为党和政府服务、为社会服务、为人民群众服务。当然,这需要互联网有关产业机构、数据机构的共同参与,也期待有更多的政府部门和律师机构,积极支持和参与到建设司法大数据发展指数系统中来,打造共享的数据交换交流平台,实现利国利民利己的大壮举。
数据分析咨询请扫描二维码
数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22