大数据时代,广告技术真能决定广告效果
广告技术爆发的标志无疑是程序化广告的兴起,受众购买、 实时竞价RTB、 需求方平台DSP、私有程序化PDB、数字广告管理云平台Trading Platform已经成为企业数字营销中的主流话题。eMarketer预计,2017年,在中国将有超过50%数字展示广告将通过程序化的方式实现 ,如此迅速的达到过半比例,这在5年前是无法想象的。
至于,广告技术从何开始,似乎缺少一个明确的答案。然而,如果我们了解广告技术的本质:通过技术消除信息不对称,实现海量广告信息和消费者的匹配,那么大数据时代的到来无疑是一切的开始。
大数据激活广告技术
大数据是指无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
在被广泛引用的IDC《2020年的数字宇宙报告》中,预测到2020年,全球数字宇宙将会膨胀到40000EB,均摊到每个人身上是5200GB以上,而这些是数字广告发展的能源材料。
成万上亿的数字媒体、不断创新的广告形式、不断变化的消费者注意力和兴趣爱好反应的正是大数据时代下的营销环境,来势凶猛,复杂多变。
大数据深刻地改变着广告形态,使得广告业成为大数据时代下首先受到冲击的产业;而广告技术随着大数据时代登上营销舞台,目的就是在连接无数的广告和消费者。
广告技术决定效果?
每一个广告主、每一个广告人都在研究广告技术,大家对广告技术的重视则引发了一个广泛的疑问:技术是否能减轻广告主对信息爆炸时代的不安感?技术是否能解决大数据时代下媒体环境割裂、消费者注意力分散的问题?
或者更直接的说, 技术在广告中的作用是什么?
我们看到,作为广告技术代表的程序化广告在很长的一段时间被扣上“精准广告”的帽子,认为通过技术一旦达成对目标人群的影响,就可以带来购买、下载等行动,绝对的精准有效。
总之,就是认为广告技术的好坏决定广告效果,而这显然是对广告技术最大的误解。
广告技术的真实作用
影响广告效果的因素是多重的,这是所有营销者都公认的一个常识。广告效果的达成是一个自然的非线性进程,不只关乎技术这一单向度要素,也包含由广告创意、广告承接等多维度的互动影响。
以最常见的电商程序化营销为例,品友在服务苏宁的过程中,需要通过系统算法和诸如Deeplink、LBS等技术服务,进行媒体筛选、人群判断、素材匹配, 从而优化点击率、到达率、降低转化单价。
但作为转化承载体的广告主,苏宁需要在投放期间的持续的进行数据回传、活动推广,同时其固有的APP用户体验也深刻的影响广告投放的最终效果。只有双方的配合,双剑合一,才能带来最高的转化率和理想的ROI。
就像《大数据时代》的作者维克托在谈到大数据的三个转变时提到,“我们不再热衷于寻找因果关系,而是事物之间的相关关系”,广告技术对广告效果的影响也同样是一个相关关系。
想想看,身在大数据时代,越来越多的营销正在打破企业传统数据边界,改变过去商业智能仅仅依靠企业内部业务数据的局面;运用远远超过企业内部数据的第二方数据、第三方数据,更促使如今的广告成为一个上下游高相关联动的整体。
广告技术通过对各方数据的学习和建模,进行预测性分析,从更高的纬度把消费者和广告主结合起来,拓展用户的应用深度和粘性,不断加深对消费者的影响,扮演着越来越重要的角色。
有人用这样一句话,描述大数据与技术的关系:大数据积累的极限是技术进步的起源;技术的极限则是大数据应用的边界。
那么,我们更有理由相信,随着信息收集方式的不断革新,算法技术的不断创新, 广告技术将不断朝着深度人工智能的方向发展,在大数据时代扮演越来越重要的角色,不断释放创意的能量,突破营销的边界!
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21