切入核心需求瞄准大数据农业
基于传感网络和3G/4G等无线宽带网络融合的新应用,通过在大棚内现场布置光照、温度、湿度等无线传感器、摄像头和控制器,用户可以随时随地查看农业大棚内的温度、湿度等信息,并可远程控制浇灌和开关卷帘等设备;利用RFID和二维码等技术对农产品进行标记和管理,监控和记录所有产品流通环节,为政府执法人员、企业以及消费者提供溯源信息;通过在农机上安装定位和农机工作状态采集设备,可实现智能化的农机定位调度与管理。类似的应用还有冷链运输监控、智能化粮食储存管理等。当前,我国电信运营商已经在智慧农业领域迈开了步伐,在黑龙江、北京、山东、湖南等省份广泛推广,给传统农业生产带来了革命性变化。未来,运营商还需要往哪些方面努力?
更深切入
农业信息化的核心需求
“我们运营商已经做了一些物联网示范项目,很多是局部的信息化应用,真正能切入行业核心业务流程的不多,因此可规模化推广的应用不多,而无法规模化应用就无法获取规模化收益。”某运营商负责农业信息化的领导对记者说,电信企业目前在很多行业和社会领域做的信息化应用,在很大程度上是行业边缘部位化、底层化的应用,在需求部门看来,其实并不完全是核心、关键环节的应用。通过对一些示范项目的分析,他深深地感到,电信运营商为其他行业做信息化应用项目的思路,往往与该行业自身的信息化思路契合度不够,需要更深层次的交流互动,才能真正深入了解行业信息化的需求,致力于解决该行业和领域的核心问题。
比如农业部门关心的是如何实现农用机械的智能化远程控制,是农业生产经营中各类信息的无障碍流通,是对全球大宗农产品价格波动的实时监测等,这些具体而专业的需求,与目前电信行业信息化部门给农民手机发送的销售价格等市场信息,安装能打电话、能上网的多功能农村信息机这些应用,确实存在比较大的差距。正如国家杂交水稻工程技术研究中心研究员、袁隆平教授的助手黄崎所说,作为种业研究人员,面临中国的优质种子被国际种业巨头全面击溃、“自留地”寥寥无几的状况,他更关心的是信息化手段怎么帮助他监控育种情况、缩短育种周期、检测种子质量,这无疑是电信业需要更加深入研究的领域。行业间的“鸿沟”其实非常明显,如果不加以解决,那么电信运营商所提供的信息化解决方案将只能浮于表面,处于底层和边缘应用,搔不着这些行业的痒处,因而不能在政策支持下大规模推广。
即便是运营商在一些地方试点的“智慧农业”,规模也较为有限。从目前运营商推进信息通信技术改造升级传统农业的实践来看,运营商主要做的还是传统的卖管道服务,且大量传感类应用流量价值并不高。如何更广泛地切入核心需求,打造更具价值的ICT服务,是运营商需要思考的。例如,针对规模化生产以及高经济附加值的农业温室大棚需求,引导合作伙伴生产和提供专门适用于农业环境的各类传感与控制设备,同时利用无线宽带网络,各类农业现场信息可以在线、实时地传送到智慧农业的远程监控与调度中心,通过与专家系统结合,实现自动化的农业生产与智能化的决策分析;针对农机管理的需求,智能农机管理系统利用卫星定位(GPS)、无线通信、地理信息系统(GIS)、3G等高新技术,将农业机械的位置、图像、音频及其他农业机械参数等进行实时管理,有效满足用户对位置服务方面的各类需求,对农机具和农机管理人员进行远程调度,提高农机具的使用和管理效率。
放眼长远
瞄准大数据农业
由于互联网的信息收集优势,大量与农业相关的市场信息、产品信息、技术信息、资源信息开始在网上汇集,并出现专业分析,这大大方便了农业生产经营决策。截至目前,中国已有4万家农业类网站,演化出综合门户、研究分析、专业集成、产销对接等不同定位的农业网站,并进一步呈现加快细分的态势。不仅种植业、畜牧业、渔业、农产品加工等次级行业已经分开,就是每个行业内部也逐渐专业化,玉米、马铃薯、牛、羊、猪等专业网站不断涌现。记者认为,未来基于互联网大数据的营销方式将让农业的发展方式从根本上发生改变,将颠覆一般意义上的“生产——销售”模式,而是运用大数据分析定位消费者的需求,按照消费者的需求去组织农产品的生产和销售,从而让农产品不再卖难在理论上成为可能,也在现实中得到初步的实践,形成电子商务的“C2B”模式,即消费者对企业。未来,大数据农业值得期待!
运营商应该用长远眼光瞄准未来的大数据农业。运营商拓展“互联网+农业”有着品牌优势、网络平台优势、渠道优势、终端用户掌握优势。电信企业最为贴近用户,用户的通话数据以及相当一部分移动互联网使用行为数据,运营商都能获取。关键在于我们如何理顺体制机制中的相关制约环节,将目光放长远些瞄准更有吸引力的大数据农业,整合线上线下优势进行深入拓展。比如我们的电商平台能不能拓展范围,吸引农产品商家加盟?与各地政府农业部门合作的农村信息服务平台能不能整合到一个大平台上,与农户的通信消费数据一起整合收集其涉农行为的数据,通过数据分析和跨界融合形成新的商业模式。未来,大数据将是金矿,希望运营商不再“起了个大早,赶了个晚集”。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20