大数据在医保管理中怎么用?医保专家谈尝试与思考
我国社会医疗保险制度改革从1994年两江试点开始,1998年国务院出台关于建立城镇职工基本医疗保险制度的决定,2003年国办下发通知实施新农合,2007年建立城镇居民医保,到今天全国绝大部分地区都已实现了城乡居民医保整合。这是一个由某个群体有基本医保发展为全民医保、城乡医保一体化的过程。在这个过程中,医保部门对自身的作用及定位也在随之变化。
过去,医保一直处于付款人的角色,参保人发生了医疗费用,医保只负责为参保人掏钱买单。医保事业发展了,人人都有医保了,保障水平包括报销比例、最高支付限额不断提高,但是老百姓仍然面临“看病贵、看病难”的问题,甚至看病花的钱比原来更多了。这是为什么?
医疗费用的不断攀升导致了医保红利被稀释——虽然医保报销得越来越多,但因为医疗费用增长过快,老百姓的医疗费用负担还是在不断加大,难以体会到医保发展带来的获得感。
医疗费用不断上涨,致使医保基金支付压力越来越大,医保部门由此开始转变思路——作为参保人代理人,应该更加体现参保人的诉求,从单纯的付费者逐渐向服务的定制者转变。医保开始与医疗服务提供方协商谈判,并对医疗服务行为进行监督与管理,希望通过医保支付标准,倒逼医院合理用药,节约成本,降低医疗费用。
由单纯的付费向谈判团购转变,为参保群众购买物有所值的医疗服务,对医保经办管理提出更高要求,既有挑战也有机遇,医保大数据的应用可以让医保管理更有效率。
应用
现在医保大数据的实际情况是,虽然数据量大,内容丰富,但由于医保制度割裂,在很多地区分属不同部门管理,区域分割,各种数据分散在近2000个系统中,加之信息标准、硬件技术、网络技术和开发商割据等带来的技术阻断,因此医保虽有数据,但能否被充分运用,还有待完善。
大数据时代背景下,医保管理迎来的挑战是能否以我们海量的数据为依托,以信息化为抓手,以大数据为手段,对积累起来的数据进行挖掘。如何去挖掘?如何去使用?这是对医保经办机构能力的考验。
依托大数据进行医保管理,北京市医保中心在几方面进行了有益探索:
1.优化付费方式
2012年,人社部、财政部和卫生部联合出台了《关于开展基本医疗保险付费总额控制的意见》,要求逐步建立保障质量、控制成本,规范诊疗为核心的服务评价体系。根据该文件,各统筹地区利用两年左右的时间全面启动总额控制管理,实际上这是一种量入为出的预算式管理。
如何比较每家医疗机构的成本?如果从成本收益的角度讲,同样的疾病,在保障患者出院转归的情况下,一些医疗机构使用的医保基金更低,那么医保宁可花更多的钱支付给这家医疗机构。因为同样的钱,在这家医疗机构体现的是使用效率的提升。
难点在于什么?在于如何科学合理评估医疗费用及质量。因为医疗服务标准化不到位,在缺乏统一的评判标准情况下,以往按照诊疗项目或者是总费用评估来进行总额控制管理,意义不大。
以全市的门诊医保管理为例。门诊因为数据的标准化程度很低,比如各医院之间分科不一样,同一名称的科室有可能内涵不一样,收集到的数据无法有效地进行归总和处理,原来仅能做到按年龄分组,无法像住院一样按照病种分组。市医保中心用三年时间来规范所有医疗机构的分科标准化,在今年启动了门诊诊断标准化的课题,准备在门诊数据分科标准化的基础上,按照每个病种来比较各家医疗机构的门诊成本。
在门诊数据标化之前,只能按照年龄分组,对于医保大数据的分析和应用也有需要注意的地方:在衡量各医院的就医费用时,不能按照“花钱越少越好”的标准一刀切,要顾及患者差异,综合考量各种因素,形成一个较为科学的评价指标。
市医保中心经过统计发现,从就诊人次、次均服用药品数量以及就诊人数的占比等数据来看,年轻人去医院基本上是看病,复诊率不高,药占比不高;而老年人基本上是拿药,从整个全年来看,接近每个月要去一次医院,药占比能够达到80%以上。在这种情况下,不能够说一家医院的次均费用300元就是高,200元就是低。因为也许200元的医院在金融区,看的都是40岁以下的患者,说不准这200元里还存在浪费现象;而300元的医院在老社区,患者都是60岁以上的人,300元相对来讲是低的。所以市医保中心在进行评价的时候,按照每一个医疗机构门诊患者的每一个年龄段所占的权重进行数据标化。标化之后,再去比较哪家医疗机构使用医保基金的效率更高,决定第二年如何去买单。
2.监控医疗行为
市医保中心通过数据的挖掘,希望达到对于医疗机构、医务人员、参保人员的医疗行为进行监控,科学评价医保基金能否更多地提高使用质量和效益。
从对于医疗机构的监管来说,作为医保经办管理部门,如果就某一个点来单看某个项目,很难去界定单次发生费用是否合理。但是通过一些数据的异动,至少可以指明方向。
市医保中心每年对于药品支出前20名做出排名,分析药品使用是否合理。如果认为药品的功能主治和它消耗的医疗费用不成正比关系,医保中心会请专家尽可能的明确医疗保险的支付适应症,就是到底应该对这些药品的哪些适应症买单,哪些不买单。但有些药品很难清楚地进行支付适应症规范,医保中心将筛选到具体的医疗机构:某种药品按照现在的支出来看,从人均用量和总量来讲,全市哪些家医疗机构花的最多?针对这两种情况,市医保中心将直接给医院法人发告知书:该种药品在全市平均人次用量同级的情况下是多少,你这家医院的使用量是多少,是全市的大概多少倍,建议医院进行合理的分析,并将结果告知医保中心是否有问题,如果有问题,问题出在哪里,怎样解决。市医保中心会对该药品连续监测三个月,三个月之后如果该药品消耗的医疗费用有显著变化,可认为医院的措施是得力的,如果没有变化,就对其进行处方点评和病理分析。
对于医务人员的监管,通过医保大数据应用的点面结合,能够察觉到更多问题。医生看似每一张处方都合格,但是这不一定代表着医生的行为就合理。市医保中心在监测过程当中,每年会对为参保人员服务的医务人员进行分析,比如从医生的总处方量和每日处方量来测算医生的医疗行为是否合理,如果平均几分钟,甚至是几十秒就开一个处方,就需要高度关注,进行深入分析。但如果不应用大数据,单看医生的处方内容,是不容易发现问题的。
通过大数据分析就医频次、费用累积等方面,可以对参保人进行监管,对其可能产生的道德风险进行控制。
挑战和前景
可以肯定的是,大数据的应用使得医保管理更加科学和精确,随着大数据的发展,医保管理也将取得新的成果。而现在距离真正的医保大数据的应用,还面临着一些挑战:
第一个是对于大数据应用价值的认识有限。现在医保对于大数据只停留在表层的使用,没有真正深层次的挖掘很多数据的潜在价值。大数据本身是内容丰富的“金矿”,但如果只是摆在那里不对其进行深层次的挖掘和剖析,并不能体现它的价值。
第二个是数据不完整,缺乏标准,如何得到更加贴近真实的判断,也是在技术层面需要深入研究的。
第三个是由于信息安全问题没有解决,信息的交流和共享还存在障碍。我们希望大数据能够打破信息孤岛,同时个人隐私能够得到保障,让医保大数据能够安全共享,从而开发出更多人的智慧,让现有的数据资源体现出更高的价值,提升我们基金使用的效能,为我们的被保险人提供更好的服务和保障。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21