Python基础之函数用法实例详解
本文以实例形式较为详细的讲述了Python函数的用法,对于初学Python的朋友有不错的借鉴价值。分享给大家供大家参考之用。具体分析如下:
通常来说,Python的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后才存在。
函数是通过赋值传递的,参数通过赋值传递给函数
def语句将创建一个函数对象并将其赋值给一个变量名,def语句的一般格式如下:
def <name>(arg1,arg2,arg3,……,argN):
<statements>
def语句是实时执行的,当它运行的时候,它创建并将一个新的函数对象赋值给一个变量名,Python所有的语句都是实时执行的,没有像独立的编译时间这样的流程
由于是语句,def可以出现在任一语句可以出现的地方--甚至是嵌套在其他语句中:
if test:
def fun():
...
else:
def func():
...
...
func()
可以将函数赋值给一个不同的变量名,并通过新的变量名进行调用:
othername=func()
othername()
创建函数
内建的callable函数可以用来判断函数是否可调用:
>>> import math
>>> x=1
>>> y=math.sqrt
>>> callable(x)
False
>>> callable(y)
True
使用del语句定义函数:
>>> def hello(name):
return 'Hello, '+name+'!'
>>> print hello('world')
Hello, world!
>>> print hello('Gumby')
Hello, Gumby!
编写一个fibnacci数列函数:
>>> def fibs(num):
result=[0,1]
for i in range(num-2):
result.append(result[-2]+result[-1])
return result
>>> fibs(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
>>> fibs(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]
在函数内为参数赋值不会改变外部任何变量的值:
>>> def try_to_change(n):
n='Mr.Gumby'
>>> name='Mrs.Entity'
>>> try_to_change(name)
>>> name
'Mrs.Entity'
由于字符串(以及元组和数字)是不可改变的,故做参数的时候也就不会改变,但是如果将可变的数据结构如列表用作参数的时候会发生什么:
>>> name='Mrs.Entity'
>>> try_to_change(name)
>>> name
'Mrs.Entity'
>>> def change(n):
n[0]='Mr.Gumby'
>>> name=['Mrs.Entity','Mrs.Thing']
>>> change(name)
>>> name
['Mr.Gumby', 'Mrs.Thing']
参数发生了改变,这就是和前面例子的重要区别
以下不用函数再做一次:
>>> name=['Mrs.Entity','Mrs.Thing']
>>> n=name #再来一次,模拟传参行为
>>> n[0]='Mr.Gumby' #改变列表
>>> name
['Mr.Gumby', 'Mrs.Thing']
当2个变量同时引用一个列表的时候,它们的确是同时引用一个列表,想避免这种情况,可以复制一个列表的副本,当在序列中做切片的时候,返回的切片总是一个副本,所以复制了整个列表的切片,将会得到一个副本:
>>> names=['Mrs.Entity','Mrs.Thing']
>>> n=names[:]
>>> n is names
False
>>> n==names
True
此时改变n不会影响到names:
>>> n[0]='Mr.Gumby'
>>> n
['Mr.Gumby', 'Mrs.Thing']
>>> names
['Mrs.Entity', 'Mrs.Thing']
>>> change(names[:])
>>> names
['Mrs.Entity', 'Mrs.Thing']
关键字参数和默认值
参数的顺序可以通过给参数提供参数的名字(但是参数名和值一定要对应):
>>> def hello(greeting, name):
print '%s,%s!'%(greeting, name)
>>> hello(greeting='hello',name='world!')
hello,world!!
关键字参数最厉害的地方在于可以在参数中给参数提供默认值:
>>> def hello_1(greeting='hello',name='world!'):
print '%s,%s!'%(greeting,name)
>>> hello_1()
hello,world!!
>>> hello_1('Greetings')
Greetings,world!!
>>> hello_1('Greeting','universe')
Greeting,universe!
若想让greeting使用默认值:
>>> hello_1(name='Gumby')
hello,Gumby!
可以给函数提供任意多的参数,实现起来也不难:
>>> def print_params(*params):
print params
>>> print_params('Testing')
('Testing',)
>>> print_params(1,2,3)
(1, 2, 3)
混合普通参数:
>>> def print_params_2(title,*params):
print title
print params
>>> print_params_2('params:',1,2,3)
params:
(1, 2, 3)
>>> print_params_2('Nothing:')
Nothing:
()
星号的意思就是“收集其余的位置参数”,如果不提供任何供收集的元素,params就是个空元组
但是不能处理关键字参数:
>>> print_params_2('Hmm...',something=42)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in <module>
print_params_2('Hmm...',something=42)
TypeError: print_params_2() got an unexpected keyword argument 'something'
试试使用“**”:
>>> def print_params(**params):
print params
>>> print_params(x=1,y=2,z=3)
{'y': 2, 'x': 1, 'z': 3}
>>> def parames(x,y,z=3,*pospar,**keypar):
print x,y,z
print pospar
print keypar
>>> parames(1,2,3,5,6,7,foo=1,bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> parames(1,2)
1 2 3
()
{}
>>> def print_params_3(**params):
print params
>>> print_params_3(x=1,y=2,z=3)
{'y': 2, 'x': 1, 'z': 3}
>>> #返回的是字典而不是元组
>>> #组合‘#'与'##'
>>> def print_params_4(x,y,z=3,*pospar,**keypar):
print x,y,z
print pospar
print keypar
>>> print_params_4(1,2,3,5,6,7,foo=1,bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1,2)
1 2 3
()
{}
相信本文所述对大家Python程序设计的学习有一定的借鉴价值。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21