大数据时代说来就来 数据垃圾变黄金
大数据时代是指以大数据为驱动,影响生产率增长和消费者盈余模式的一个新的时代。大数据是高容量,高速度和高品质的信息资产,需要新的处理形式,其难以采用常规工具进行采集和处理,大数据时代里,常利用软件工具对海量数据进行挖掘和运用,借此帮助进行决策、洞察发现和流程优化。
大数据时代的迟到
一般来讲,大数据的概念提出可以追溯到上世纪90年代,大数据一词在当时就已经开始流行。而知名的咨询公司麦肯锡在2011年提出“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素”正式代表着大数据时代的开启。关注大数据观察网(微信公众号:shuju_net)了解更多精彩资讯
从90年代的提出到现如今大数据时代的开启,大数据时代几乎迟到了20年。大数据的迟到主因是其数据集非常大且复杂,传统的数据处理方式和应用软件并不足以解决大数据问题,包括采集、存储、分析、数据策划、搜索、共享、传输、可视化查询、更新以及信息隐私等多方面都是难以攻克的难题。
数据存储方式的变革
事实上,自上世纪80年代开始,世界人均存储信息量约40个月翻一倍;可是大数据时代,这一趋势开始加速。2008年全球产生的数据量为0.49ZB(1ZB=10243TB),到2011年,这一数字变为了1.82ZB。数据量的爆炸来源于大量廉价的信息传感移动设备通过网络进行收集,而传统的处理大量数据的抽样调查法局限性变得越来严重。
云时代的开启给了大数据的发展提供了机会,也促进了大数据时代的降临。云计算和分布式存储为大数据提供了数据处理和数据存储的能力。可以说,没有云时代就不会有大数据时代的出现。
大数据时代的特点
大数据时代基于大数据而开启,而大数据的特点毫无疑问是大。可是大却并不是新数据生态系统最相关的特征,而是通过对数据集的分析获取新的相关性。
在2001年的研究报告中,META集团(现在的Gartner)将数据增长所遇到的挑战和机会定义为三维,即Volume数据增量,Velocity数据输入和Variety输出速度以及数据类型和来源范围,使用“3Vs”模型来描述大数据的方法一直延续至今。
大数据并不只有大
2012年,Gartner更新了其对大数据的定义:“大数据是高容量,高速度即高品质的信息资产,借助新的处理形式,以帮助客户加强决策,洞察发现和流程优化。”3Vs模型也在不同行业得到了不同修正,如IBM就提出,大数据具备的5V特点分别为Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)和Veracity(真实性)。
大数据的固有特性在于其拒绝了传统的随机分析法(抽样调查),而是选择了将所有的数据都进行分析和处理,观察并跟踪数据的变化,最大程度上减少了数据误差,帮助用户的每一个决断都有据可依。大数据生成和存储的数据量的大小决定了其价值和潜在的洞察力,太小则可能不会被视为大数据。
大数据的核心在分析
速度方面,数据的生成和处理速度是为了满足增长和发展之路中的需求和挑战,如今的大数据通常可以实时获取。种类方面,数据的类型包括了文字,图像,音频,视频等多种数据通过数据融合可以帮助用户有效地利用其所产生的洞察力;低价值密度意味着大数据的变化性突出,数据集的不一致可能导致处理和管理数据阻碍进程;同时由于质量差异很大容易影响分析的准确性。
目前通常会利用机器学习对大数据进行分析,而这种简单的检测模式并不会告诉你数据有什么,却可以帮助用户发现藏在数据里的秘密。大数据通常只是一堆数字互动后而产生的副产品,可是他却是真实的,剥离后大数据的价值就可以显现。
大的数据时代的行业影响
大数据的时代的影响是全方面的,在市场中的应用已经不再局限于传统领域,而是全面开始影响三百六十行。
政府方面,运用大数据可以很好的控制采购成本,使生产力和创新效率得到提高。但是这也存在着一个明显的限制,数据分析通常需要中央和地方多个部门进行合作,从而才可以完善数据,创造新的效率提升方式。此外,在就业,经济生产力,犯罪,安全以及自然灾害和资源管理等方面大数据也可以起到他的作用。
制造业是最适合大数据的行业之一
制造业方面,大数据为制造业的透明度提供了基础设施,能够很好的解决组件性能和可用性不一致等问题。而且,预测制造的概念正在兴起,不同类型的感测数据可以借助声音,振动,压力,电流,电压和控制器数据等进行数据采集,大量的感官数据构成了制造业的大数据,生成的大数据作为预测及预防等方面的工具对行业的预判有着良好的帮助。
医疗方面,大数据分析可以提供个性化医疗和规范分析,临床风险干预和预测分析,使得护理变异性降低,患者数据自动化提供内外部报告,可以提供标准化医疗和患者登记册散点解决方案,帮助医疗改善。而且,随着可穿戴技术的发展,医疗数据量还将进一步提高,包括电子健康记录数据,成像数据,患者生成的数据,传感器数据和其他形式的数据都会让大数据在医疗领域的地位提升。
万物互联产生大量数据
除了这些传统领域,大数据还促进了新行业的发展,比如物联网。大数据于物联网协同工作,从物联网设备中获取数据提供设备互联性的映射,借助大数据技术进行分析,然后再将分析结果提供给医疗、制造等多个领域,帮助提高相关行业的工作效率。
目前,全球有着46亿手机用户,接入互联网的用户有10到20亿。这些用户每天所产生的数据量是巨大的,如果废弃,那就是数据垃圾,而如果收集并且用于种种行业之中,那么这就是大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31