企业做大数据,需要什么样的伙伴
企业做大数据以来,碰到了很多的合作伙伴,大家都有疑问,你需要什么,我能帮到你什么?这里谈谈笔者个人的理解,希望有所启示。
一是大数据赋予这类公司更大的机遇,这个时代,任何公司都面临着从传统经验决策向数据决策的挑战,传统决策的科学性所以不够,一方面是企业的数据意识并不强,二是数据本身乏善可陈,比如以前运营商并没有把O域数据当成真正的资源来运营。
大数据则赋予这类公司以全新的机会,几乎在任何一个方面,这类公司都由此受益,做数据挖掘的,最苦恼的,莫过于缺数据,现在有了,而数据化思维席卷全行业,也让其获得了势,没有更好的时代了。
而大多数企业, 太缺乏采矿能力了,面对一大堆数据束手无策,这为数据挖掘见长的公司提供了全新的机会。
二是稀缺性,应该讲,全行业干这活的公司,并敢于对外输出能力的,屈指可数,能者寥寥。
国内IT码农很多,但数据建模师却很难找,一方面跟职业特点有关,码农可以快速产出,但数据建模师培养非一日之功,另一方面,具备数据建模师培养环境的公司很少,所谓三人成行,英雄主义固然可以,但要能真正形成一直建模团队非常不易。
笔者看到的大多优秀的挖掘公司,人员素质相对较高,培养体系较好,应是有一定文化沉淀的,数据挖掘显然是不能过于浮躁的,在这个躁动的时代,越发显得其珍贵。
还有一个原因是,诸如BAT等一些互联网公司对于建模师的疯狂席卷,也是导致稀缺的一个原因,笔者自己的团队一年内也送走2人,算是一个佐证。
但这类挖掘公司,也面临非常大的挑战,一方面传统的知识结构和挖掘技能需要与时俱进,什么SAS,SPSS或者专有挖掘平台,并不能包打天下,诸如深度学习、搜索算法、并行挖掘等等,似乎对他们也是全新的挑战,另一方面,也面临激烈的人才竞争,在这个关键节点,还是要守住。
但很多传统意义上的合作伙伴,比如运营商的集成商,在这方面的能力则是乏善可陈的,大家都在提大数据转型,但似乎更侧重在平台层面投入力量,在数据建模上鲜有动作或建树,或者仅仅是蜻蜓点水。
可以这么说,大多数传统企业的合作伙伴,如果说是做BI的,更擅长的是取数或报表能力,数据挖掘有些勉为其难,这似乎成为了其大数据战略的盲点。
一些公司似乎也走入另一个误区,以为咨询分析师可以起到建模师的职责,但大数据时代,更需要能自己操控数据,PPT也许是重要,但真要玩数据,还得见真功夫,不是提个取数需求,EXCEL里面透视一下就算是了。
曾经让资深的咨询分析师来干建模师的活,也是非常差强人意的,说得再漂亮,PPT写得再好,管理能力再高,在数据挖掘面前也是一个死。
大数据时代,满足一个企业的需求,需要从数据开始, 没有这个能力,很难说有什么新的增长机会。
其次,需要服务能力卓越的大数据技术公司。
大数据技术的特点决定了其必然是百花齐放的,封闭的技术体系并不现实,因此大数据技术支撑不可能再大包大揽,某些公司规划很大,野心很大,一来就谈PaaS,但具体某个产品出来问题太多,拿客户当白老鼠。
做大数据平台或产品还是要讲究点精益求精,少提点概念,好的东西自然会有人买账,比如GBASE,相反,则会被唾弃,这是个群雄并起的时代,不会缺了谁就活不了,产品做深远好过摊子铺得太大。
阿里算有个PaaS,那也是对内运营千锤百炼出来的,但他们的道路,并不可模仿,如数加这类平台组件大多通用性并不强,只能依托云平台来进行捆绑。
同时,大数据应用要求变化太快,技术一日千里,必然要求大数据技术公司拥有强大、快速的售后技术服务支撑能力,那种听不见一线炮声的产品研发模式,是缺乏竞争力的。
同时要求你的产品符合分布式、弹性可扩展、相对开放的路线要求,但无论如何,大数据技术产品从底向上,都孕育着巨大机会,比如浙江移动对于在线多维分析有着强烈的需求,只要你的产品足够好,服务能力足够强。
有些技术公司,似乎已经忘记了自己是如何发家的,事情还没做呢就先放一套规矩出来,比如产品化的原则,诚然,产品成熟后的确可以,但路还没趟出来呢,就急着以产品路线挟制客户,显示出了其在大数据上的急功近利。
再次,能起到连接的公司,也孕育着巨大的机会。
中国移动提出了大连接的战略,是有其深远意义的,诸如运营商等拥有大数据的企业,到底缺什么?
实际上是缺真实的市场需求,从全行业讲,整个社会对于其数据的理解也是非常有限的,举个例子:
某个大型商场规划项目,现在需要用数据来决策,商场会找谁要数据?
估计没人会想到运营商也能做这事,即使听说了,也对其报严重的怀疑,这是因为,虽然运营商数据有价值,但很少有机会能推出真正场景化的大数据产品,当前的一些验真接口,或者依托传统渠道走一波的产品形式,其实跟大数据关系不大,不能自己骗自己。
事实上,现在运营商的大数据产品大多还在概念和形象展示阶段,实用性离商用还有不少距离,比如一份商业分析报告,涉及职业,收入、习惯等标签需求,估计没有运营商能较为完整做出来,一方面是前期没有足够的需求输入,另一方面自己也没储备,诸如职业等标签,能做和已经有了毕竟是两个层面的事情。
当前,市场真实的客户与运营商还有着不少的距离,因此,深谙行业大数据需求的企业,能够撮合最终客户与运营商的企业,比如垂直咨询服务公司,应有巨大的商机。
解决沟通问题,让真实的需求暴露在运营商面前,让其认识到差距,才可能有市场化驱动的建模和产品,运营商才有真正商业化、规模化变现的机会,在这个过程中,起到粘合剂的公司,必然有巨大的发展空间。
比如对于商业分析报告,运营商提供标签,咨询公司提供垂直分析报告,两者各取所长,就是一种很好的大数据生态形式。
很多企业现在还苦恼于没有好的大数据商业模式,但实际上,哪有那么多的商业模式,任何一种现存的商业模式结合你独有的数据,就有广阔的前景,关键在于你能做多深。
当然我们提连接不是让合作伙伴囤积数据,一开始就抱有这个想法的第三方公司,是无法长期合作的,谁都不是傻子。
最后,数字化运营能力急缺,提供这方面的服务还是有前景的。
企业文化因素、大数据的高门槛、不擅长策划和拓展,无大数据运营经验,习惯坐等生意上门等因素,都较大抑制了大数据的发展,比如运营商,在传统通信产品运营上可能还有一些套路,但在较为高端的大数据产品上,人力资源和运营经验则非常缺乏。
大数据技术人员当商务人员用,这是转型期间无奈的选择,但也孕育着合作机会。
面对大数据,我们的确缺失太多的能力,但我们的需求也确切切实实在改变,对于传统合作伙伴来讲,原有的地盘不会是永远的,需要有一颗勇于改变的心,对于新的合作伙伴,则要抓住这个机会,找到适合自己的切入点,与客户共同成长。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26