“大数据”显然已经成为新一代“网红”
随着“云计算”、“互联网”、“物联网”的快速发展,大数据(Big Data)也吸引了越来越多的人关注,成为社会热点之一。大街小巷不论是技术人员、咨询人士以及各行各业的精英达人都在探讨着“大数据”,“大数据”显然已经成为新一代“网红”。 本文将从以下几个方面分析大数据及大数据产业:
●大数据是如何成为网红的?
●大数据究竟是什么?
●大数据发展阶段及市场规模
●大数据主要应用领域
●大数据产业链及细分领域
●我国大数据产业竞争格局
●我国大数据产业发展需求
●我国大数据产业存在挑战
大数据一词最早出现是在1980年著名未来学家托夫勒在其所著的《第三次浪潮》中,书中提出“如果说IBM的主机拉开了信息化革命的大幕,那么‘大数据’才是第三次浪潮的华彩乐章。” 2008年9月《自然》杂志推出了名为“大数据”的封面专栏,从此大数据开始崭露头角,2009年“大数据”才成为信息技术行业中的热门词汇。
2011年6月全球知名咨询公司麦肯锡发布《大数据:下一个创新、竞争和生产力的前沿》研究报告,最早提出“大数据时代已经到来”,从此大数据开始成为全球“网红”,美国、中国、英国、日本等纷纷提出要投资这位“网红”,引爆大数据发展的浪潮。
大数据在业内并没有统一的定义,不同厂商、不同用户,站的角度不同,对大数据的理解也不一样。随着大数据的不断火热,其定义通常指具有体量巨大(Volume)处理速度较快(velocity)、数据类型多样(variety)以及商业价值较高(Value)等4V特点的数据。
目前,从发展阶段来看,我国大数据产业处于快速推进期,中国和美国几乎同一时期关注大数据产业,但与美国存在一定的差距,究其原因,美国是全球信息技术产业的领头羊, 在硬件和软件领域都拥有超一流的实力, 早在大数据概念火热起来之前, 美国信息技术产业在大数据领域已经有了很多技术积累, 这使得美国的大型信息技术企业可以迅速转型为大数据企业,从而推动整个大数据产业在美国的发展壮大。另外中国数据大多数都掌握在政府手里,数据源比美国相对封闭,数据分析受到局限,影响大数据的发展。
虽然目前中国在大数据领域稍滞后美国,但是从全球范围来看,大数据产业已经开始处于概念热潮的峰值滑落阶段,而我国大数据产业市场规模仍保持超高速增长。
2015年我国大数据市场规模为1692亿元(由于大数据是新兴产业,统计口径没有标准,市场上对于大数据规模的统计数据各有不同,本文是根据贵阳大数据交易所数据得来),占全球市场大数据总规模的20.30%,仍然具有增长空间。预计2020年全球大数据市场规模将超过10270亿美元,我国大数据市场规模将接近13625亿元。
谈及大数据应用,可以分为政府服务类应用和行业商业类应用两种。
政府服务类数据应用为政府管理提供强大的决策支持。在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性;在交通管理方面,通过对道路交通信息的实时挖掘,能够有效缓解交通拥堵,并快速响应突发状况,为城市交通的良性运转提供科学的决策依据;在舆情监控方面,通过网络关键词搜索及语义智能分析,能提高舆情分析的及时性、全面性,全面掌握社情民意,提高公共服务能力,应对网络突发的公共事件,打击违法犯罪;在安防领域,通过大数据的挖掘,可以及时发现人为或自然灾害、恐怖事件,提高应急处理能力和安全防范能力。政府服务类大数据与民生密切相关,其应用主要包括智慧交通、智慧医疗、智慧家居、智慧安防等,这些智慧化的应用将极大地拓展民众生活空间,引领大数据时代智慧人生的到来。
行业商业类大数据应用较多,主要将大数据与传统企业相结合,有效提升运营效率和结构效率、推动传统产业升级转型。因此,各产业都在深入挖掘大数据的价值,研究大数据的深度应用,可以说,大数据在各行业的全面深度渗透将有力地促进产业格局重构,成为中国经济新一轮快速增长的新动力和拉动内需的新引擎。
目前,众多应用领域中,电子商务、电信领域应用成熟度较高,政府公共服务、金融等领域市场吸引力最大,具有发展空间。
大数据产业是以大数据为核心资源,将产生的数据通过采集、存储、处理、分析并应用和展示,最终实现数据的价值。整个大数据产业分为大数据核心业态和大数据衍生业态。
大数据核心业态围绕数据如何获取?获取后的数据如何存储并挖掘处理?处理后的数据如何应用?为重点。对应大数据产业架构的大数据存储层、大数据分析层和大数据应用层。
大数据衍生业态指围绕着大数据核心业态所需要的软硬件基础设施、安全服务、大数据交易和技术支持类产业。
依据从数据采集-数据存储-数据处理-数据分析-数据应用这条产业链进行梳理,共涉及到11类主要产品和服务:
1.市场结构:
我国大数据企业竞争格局总体呈现数据资源型企业、技术拥有型企业和应用服务型企业“三分天下”局面。
数据资源型企业,即先天拥有或者以汇聚数据资源为目标的企业,这类企业将占据一定先发优势,利用手中的数据资源,或挖掘数据来提升企业竞争力,或主导数据交易平台机制的形成。以在自身行业积累了丰富数据资源,和力图汇聚开放网络数据的企业以及互联网企业为代表。典型代表企业数据堂、星图数据、优易数据、腾讯、百度、阿里巴巴等。
技术拥有型企业是以技术开发见长的,即专注开发数据采集、存储、分析以及可视化工具的企业,包括软件企业、硬件企业和解决方案商,代表企业星环科技、永洪科技、南大通用、华为、用友、联想、浪潮、曙光等。
应用服务型企业是指为客户提供云服务和数据服务的应用服务型企业,这类企业广泛对接各个行业,专注于产品的便捷化和易维护性,同时要针对不同行业客户的需求提供差异化的服务代表企业百分点、明略数据、TalkingData等。
2.区域分布:
我国大数据产业集聚区主要位于经济比较发达的地区,北京、上海、广东是发展的核心地区,这些地区拥有知名互联网及技术企业、高端科技人才、国家强有力政策支撑等良好的信息技术产业发展基础,形成了比较完整的产业业态,且产业规模仍在不断扩大。
除此之外,以贵州、重庆为中心的大数据产业圈,虽然地处经济比较落后的西南地区,但是贵州、重庆等地依托政府对其大数据产业发展提供的政策引导,积极引进大数据相关企业及核心人才,力图占领大数据产业制高点,带动区域经济新发展。
京津冀地区依托北京,尤其是中关村在信息产业的领先优势,培育了一大批大数据企业,是目前我国大数据企业集聚最多的地方。不仅如此,部分数据企业扩散了到天津和河北等地,形成了京津冀大数据走廊格局;
珠三角地区依托广州、深圳等地区的电子信息产业优势,发挥广州和深圳两个国家超级计算中心的集聚作用,在腾讯、华为、中兴等一批骨干企业的带动下,珠三角地区逐渐形成了大数据集聚发展的趋势;
长三角地区依托上海、杭州、南京,将大数据与当地智慧城市、云计算发展紧密结合,吸引了大批大数据企业,促进了产业发展。上海发布《上海推进大数据研究与发展三年行动计划》,推动大数据在城市管理和民生服务领域应用。
大西南地区以贵州、重庆为代表城市,通过积极吸引国内外龙头骨干企业,实现大数据产业在当地的快速发展。2013年起,贵州市率先把握大数据发展机遇,充分发挥其发展大数据产业所独具的生态优势、能源优势、区位优势及战略优势等四大优势,抢占先机率先启动首个国家大数据综合实验区、国家大数据产业集聚区和国家大数据产业技术创新实验区;率先建成全国第一个省级政府数据集聚共享开放的统一云平台;率先开展大数据地方立法,颁布实施《贵州省大数据应用促进条例》;率先设立全球第一个大数据交易所;率先举办贵阳国际大数据产业博览会和云上贵州大数据商业模式大赛等。
3.竞争态势:
从大数据产业链竞争态势来看,大数据产业链整体布局完整,但局部环节竞争程度差异化明显,产业链中游竞争集中度较高,基本被国外企业垄断,位于产业链下游的数据展示与应用竞争集中度较低,尚未形成垄断,是国内新兴企业最有机会的领域。
我国持续增长的网民数量和互联网普及率为数据量的扩大奠定基础,随着“互联网+”的发展、信息技术的创新、互联网的普及,越来越多的数据将会得到记录,数据源范围会不断扩大,所属行业会不断丰富。据预测至2020年全球所产生的数据量将会达到40万亿GB(约为40EB),为大数据行业发展奠定基础,催生强大的大数据存储、处理与分析需求。
虽然我国大数据产业快速发展,但是仍存在行业发展良莠不齐、数据开放程度较低、安全风险日益突出、技术应用创新滞后等四大挑战。
行业发展良莠不齐:我国大数据仍处于起步发展阶段,行业标准和管理机制尚未成熟,在“万众创新,大众创业”的大环境下,大量的大数据企业不断涌现,存在很多企业借大数据概念热潮投机倒把,行业发展良莠不齐;
数据开放程度较低:数据开放共享是促进大数据产业发展的重要举措,我国政府部门掌握着全体社会80%的信息资源,但这些信息资源由于部门或区域利益分别被不同的部门控制,且不同部门的数据标准不一致,导致信息流的上游环节处于封闭状态,不能有效地释放和共享,数据源的欠缺直接影响大数据分析和处理的需求,导致大数据应用缺乏价值;
安全风险日益突出:随着云计算、物联网和移动互联网等新一代信息技术的飞速发展,大数据应用规模日趋扩大,数据及其应用皆呈指数级增长态势,当企业用数据挖掘和数据分析获取商业价值的时候,黑客也可以利用大数据分析向企业发起攻击,同时社交网站的隐私数据也可能被不法商家利用等等,这都给数据安全带来了巨大的挑战;
技术应用创新滞后:我国大数据产业虽然与国际大数据发展几近步伐相同,但是仍然存在技术及应用滞后的差距,在大数据相关的数据库及数据挖掘等技术领域,处于支配地位的领军企业均为国外企业。市场上,由于国内大数据企业技术上的不足,用户更加青睐IBM、甲骨文、EMC、SAP 等国外IT企业,国内企业市场占有率仅5%左右。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16