SPSS数据准备:数据验证
一、数据准备:
随着计算系统能力的提高,对信息的需要成比例增长,导致收集的数据越来越多—出现更多的个案、更多的变量以及更多的数据输入错误。这些错误会损害作为数据仓储最终目标的预测模型的预测,因此您需要使数据保持“干净”。不过,数据仓储中的数据量的增长已经大大超出了手动验证个案的能力,而这对于实现自动化的数据验证过程来说十分关键。
“数据准备”附加模块允许您标识活动数据集中的异常个案和无效个案、变量和数据值,并准备建模数据。
1、元数据准备。复查数据文件中的变量并确定其有效值、标签和测量级别。标识不太可能但经常存在编码错误的变量值的组合。根据这些信息定义验证规则。这是一项极为耗时的任务,不过,如果您需要定期验证具有类似属性的数据文件,则完成这项任务是十分值得的。
2、数据验证。运行基本检查并针对定义的验证规则进行检查,标识无效个案、变量和数据值。找到无效数据时,调查并更正原因。这可能需要另一个通过元数据准备的步骤。
3、模型准备。使用自动数据准备获得将改进模型构建的原始字段的转换。标识可能导致许多预测模型出现问题的潜在统计离群值。有些离群值是尚未标识的无效变量值导致的结果。这可能需要另一个通过元数据准备的步骤。
二、验证规则
1、规则用于确定个案是否有效。有两种类型的验证规则:
1.1、单变量规则。单变量规则包含一组应用于单个变量的固定检查,例如范围外值的检查。对于单变量规则,有效值可以表示为一个值范围,也可以表示为一个可接受值列表。
1.2、交叉变量规则。交叉变量规则是用户定义的规则,可以应用于单个变量,也可以应用于变量组合。交叉变量规则由标记无效值的逻辑表达式定义。
2、载入预定义验证规则(数据-验证-加载预定义验证规则)
通过从安装中所包含的外部数据文件载入预定义规则可以快速获取一组可供使用的验
证规则。
3、定义验证规则(数据-验证-定义规则)
“定义验证规则”对话框允许您创建和查看单变量和交叉变量验证规则。
三、验证数据(数据-验证-验证数据)
“验证数据”对话框允许您标识活动数据集中可疑的和无效的个案、变量和数据值。
1、示例。数据分析人员每个月必须向客户提供客户满意度报告。她每个月接收到的数据需要进行质量检查,看是否存在不完整的客户标识、超出范围的变量值以及经常错误输入的变量值组合。“验证数据”对话框允许分析人员指定唯一标识客户的变量,为有效变量范围定义单变量规则,并定义交叉变量规则以找出不可能的组合。该过程返回问题个案和变量的报告。此外,每个月的这些数据都具有相同的数据元素,因此分析人员可以将规则应用于下个月的新数据文件。
2、统计量。该过程生成多项检查失败的变量、个案和数据值的列表,违反单变量和交叉变量规则的次数计数,以及分析变量的简单描述摘要。
3、权重。该过程忽略权重变量规范,而是像对待任何其他分析变量一样对待权重变量。
4、分析变量。如果在“变量”选项卡上选择了任何分析变量,则可选择以下任意有效性检查。复选框允许您打开或关闭检查。
4.1、缺失值的最大百分比。报告缺失值百分比大于指定值的分析变量。指定的值必须是一个小于等于100的正数。
4.2、单个类别中个案所占的最大百分比。如果任何分析变量是分类变量,则此选项报告表示单个非缺失类别的个案的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。百分比基于具有非缺失变量值的个案。
4.3、计数为1的类别的最大百分比。如果任何分析变量是分类变量,则此选项报告仅包含一个个案的变量类别的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。
4.4、最小变异系数。如果任何分析变量是刻度变量,则此选项报告变异系数的绝对值小于指定值的刻度分析变量。此选项仅适用于均值非零的变量。指定的值必须是一个非负数。指定0会关闭变异系数检查。
4.5、最小标准差。如果任何分析变量是刻度变量,则此选项报告标准差小于指定值的刻度分析变量。指定的值必须是一个非负数。指定0会关闭标准差检查。
5、摘要变量。这些是可以保存的单个变量。选中一个框可保存该变量。为这些变量提供了默认名称;您可以进行编辑。
5.1、空个案指示器。空个案会分配值1。所有其他个案都具有代码0。变量的值反映在“基本检查”选项卡上指定的范围。
5.2、双ID组。具有相同个案标识的个案(具有不完整标识的个案除外)会分配有相同的组号。具有唯一标识或不完整标识的个案都具有代码0。
5.3、ID指示器不完整。具有空的或不完整的个案标识的个案将分配值1。所有其他个案的代码都为0。
5.4、确认规则违反(总数)。这是按个案计数的违反单变量和交叉变量验证规则的总数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31