SPSS数据准备:数据验证
一、数据准备:
随着计算系统能力的提高,对信息的需要成比例增长,导致收集的数据越来越多—出现更多的个案、更多的变量以及更多的数据输入错误。这些错误会损害作为数据仓储最终目标的预测模型的预测,因此您需要使数据保持“干净”。不过,数据仓储中的数据量的增长已经大大超出了手动验证个案的能力,而这对于实现自动化的数据验证过程来说十分关键。
“数据准备”附加模块允许您标识活动数据集中的异常个案和无效个案、变量和数据值,并准备建模数据。
1、元数据准备。复查数据文件中的变量并确定其有效值、标签和测量级别。标识不太可能但经常存在编码错误的变量值的组合。根据这些信息定义验证规则。这是一项极为耗时的任务,不过,如果您需要定期验证具有类似属性的数据文件,则完成这项任务是十分值得的。
2、数据验证。运行基本检查并针对定义的验证规则进行检查,标识无效个案、变量和数据值。找到无效数据时,调查并更正原因。这可能需要另一个通过元数据准备的步骤。
3、模型准备。使用自动数据准备获得将改进模型构建的原始字段的转换。标识可能导致许多预测模型出现问题的潜在统计离群值。有些离群值是尚未标识的无效变量值导致的结果。这可能需要另一个通过元数据准备的步骤。
二、验证规则
1、规则用于确定个案是否有效。有两种类型的验证规则:
1.1、单变量规则。单变量规则包含一组应用于单个变量的固定检查,例如范围外值的检查。对于单变量规则,有效值可以表示为一个值范围,也可以表示为一个可接受值列表。
1.2、交叉变量规则。交叉变量规则是用户定义的规则,可以应用于单个变量,也可以应用于变量组合。交叉变量规则由标记无效值的逻辑表达式定义。
2、载入预定义验证规则(数据-验证-加载预定义验证规则)
通过从安装中所包含的外部数据文件载入预定义规则可以快速获取一组可供使用的验
证规则。
3、定义验证规则(数据-验证-定义规则)
“定义验证规则”对话框允许您创建和查看单变量和交叉变量验证规则。
三、验证数据(数据-验证-验证数据)
“验证数据”对话框允许您标识活动数据集中可疑的和无效的个案、变量和数据值。
1、示例。数据分析人员每个月必须向客户提供客户满意度报告。她每个月接收到的数据需要进行质量检查,看是否存在不完整的客户标识、超出范围的变量值以及经常错误输入的变量值组合。“验证数据”对话框允许分析人员指定唯一标识客户的变量,为有效变量范围定义单变量规则,并定义交叉变量规则以找出不可能的组合。该过程返回问题个案和变量的报告。此外,每个月的这些数据都具有相同的数据元素,因此分析人员可以将规则应用于下个月的新数据文件。
2、统计量。该过程生成多项检查失败的变量、个案和数据值的列表,违反单变量和交叉变量规则的次数计数,以及分析变量的简单描述摘要。
3、权重。该过程忽略权重变量规范,而是像对待任何其他分析变量一样对待权重变量。
4、分析变量。如果在“变量”选项卡上选择了任何分析变量,则可选择以下任意有效性检查。复选框允许您打开或关闭检查。
4.1、缺失值的最大百分比。报告缺失值百分比大于指定值的分析变量。指定的值必须是一个小于等于100的正数。
4.2、单个类别中个案所占的最大百分比。如果任何分析变量是分类变量,则此选项报告表示单个非缺失类别的个案的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。百分比基于具有非缺失变量值的个案。
4.3、计数为1的类别的最大百分比。如果任何分析变量是分类变量,则此选项报告仅包含一个个案的变量类别的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。
4.4、最小变异系数。如果任何分析变量是刻度变量,则此选项报告变异系数的绝对值小于指定值的刻度分析变量。此选项仅适用于均值非零的变量。指定的值必须是一个非负数。指定0会关闭变异系数检查。
4.5、最小标准差。如果任何分析变量是刻度变量,则此选项报告标准差小于指定值的刻度分析变量。指定的值必须是一个非负数。指定0会关闭标准差检查。
5、摘要变量。这些是可以保存的单个变量。选中一个框可保存该变量。为这些变量提供了默认名称;您可以进行编辑。
5.1、空个案指示器。空个案会分配值1。所有其他个案都具有代码0。变量的值反映在“基本检查”选项卡上指定的范围。
5.2、双ID组。具有相同个案标识的个案(具有不完整标识的个案除外)会分配有相同的组号。具有唯一标识或不完整标识的个案都具有代码0。
5.3、ID指示器不完整。具有空的或不完整的个案标识的个案将分配值1。所有其他个案的代码都为0。
5.4、确认规则违反(总数)。这是按个案计数的违反单变量和交叉变量验证规则的总数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12