SPSS数据准备:数据验证
一、数据准备:
随着计算系统能力的提高,对信息的需要成比例增长,导致收集的数据越来越多—出现更多的个案、更多的变量以及更多的数据输入错误。这些错误会损害作为数据仓储最终目标的预测模型的预测,因此您需要使数据保持“干净”。不过,数据仓储中的数据量的增长已经大大超出了手动验证个案的能力,而这对于实现自动化的数据验证过程来说十分关键。
“数据准备”附加模块允许您标识活动数据集中的异常个案和无效个案、变量和数据值,并准备建模数据。
1、元数据准备。复查数据文件中的变量并确定其有效值、标签和测量级别。标识不太可能但经常存在编码错误的变量值的组合。根据这些信息定义验证规则。这是一项极为耗时的任务,不过,如果您需要定期验证具有类似属性的数据文件,则完成这项任务是十分值得的。
2、数据验证。运行基本检查并针对定义的验证规则进行检查,标识无效个案、变量和数据值。找到无效数据时,调查并更正原因。这可能需要另一个通过元数据准备的步骤。
3、模型准备。使用自动数据准备获得将改进模型构建的原始字段的转换。标识可能导致许多预测模型出现问题的潜在统计离群值。有些离群值是尚未标识的无效变量值导致的结果。这可能需要另一个通过元数据准备的步骤。
二、验证规则
1、规则用于确定个案是否有效。有两种类型的验证规则:
1.1、单变量规则。单变量规则包含一组应用于单个变量的固定检查,例如范围外值的检查。对于单变量规则,有效值可以表示为一个值范围,也可以表示为一个可接受值列表。
1.2、交叉变量规则。交叉变量规则是用户定义的规则,可以应用于单个变量,也可以应用于变量组合。交叉变量规则由标记无效值的逻辑表达式定义。
2、载入预定义验证规则(数据-验证-加载预定义验证规则)
通过从安装中所包含的外部数据文件载入预定义规则可以快速获取一组可供使用的验
证规则。
3、定义验证规则(数据-验证-定义规则)
“定义验证规则”对话框允许您创建和查看单变量和交叉变量验证规则。
三、验证数据(数据-验证-验证数据)
“验证数据”对话框允许您标识活动数据集中可疑的和无效的个案、变量和数据值。
1、示例。数据分析人员每个月必须向客户提供客户满意度报告。她每个月接收到的数据需要进行质量检查,看是否存在不完整的客户标识、超出范围的变量值以及经常错误输入的变量值组合。“验证数据”对话框允许分析人员指定唯一标识客户的变量,为有效变量范围定义单变量规则,并定义交叉变量规则以找出不可能的组合。该过程返回问题个案和变量的报告。此外,每个月的这些数据都具有相同的数据元素,因此分析人员可以将规则应用于下个月的新数据文件。
2、统计量。该过程生成多项检查失败的变量、个案和数据值的列表,违反单变量和交叉变量规则的次数计数,以及分析变量的简单描述摘要。
3、权重。该过程忽略权重变量规范,而是像对待任何其他分析变量一样对待权重变量。
4、分析变量。如果在“变量”选项卡上选择了任何分析变量,则可选择以下任意有效性检查。复选框允许您打开或关闭检查。
4.1、缺失值的最大百分比。报告缺失值百分比大于指定值的分析变量。指定的值必须是一个小于等于100的正数。
4.2、单个类别中个案所占的最大百分比。如果任何分析变量是分类变量,则此选项报告表示单个非缺失类别的个案的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。百分比基于具有非缺失变量值的个案。
4.3、计数为1的类别的最大百分比。如果任何分析变量是分类变量,则此选项报告仅包含一个个案的变量类别的百分比大于指定值的分类分析变量。指定的值必须是一个小于等于100的正数。
4.4、最小变异系数。如果任何分析变量是刻度变量,则此选项报告变异系数的绝对值小于指定值的刻度分析变量。此选项仅适用于均值非零的变量。指定的值必须是一个非负数。指定0会关闭变异系数检查。
4.5、最小标准差。如果任何分析变量是刻度变量,则此选项报告标准差小于指定值的刻度分析变量。指定的值必须是一个非负数。指定0会关闭标准差检查。
5、摘要变量。这些是可以保存的单个变量。选中一个框可保存该变量。为这些变量提供了默认名称;您可以进行编辑。
5.1、空个案指示器。空个案会分配值1。所有其他个案都具有代码0。变量的值反映在“基本检查”选项卡上指定的范围。
5.2、双ID组。具有相同个案标识的个案(具有不完整标识的个案除外)会分配有相同的组号。具有唯一标识或不完整标识的个案都具有代码0。
5.3、ID指示器不完整。具有空的或不完整的个案标识的个案将分配值1。所有其他个案的代码都为0。
5.4、确认规则违反(总数)。这是按个案计数的违反单变量和交叉变量验证规则的总数。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16