python+mongodb数据抓取详细介绍
Python数据抓取分析
编程模块:requests,lxml,pymongo,time,BeautifulSoup
首先获取所有产品的分类网址:
def step():
try:
headers = {
。。。。。
}
r = requests.get(url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
url = soup.find_all(正则表达式)
for i in url:
url2 = i.find_all('a')
for j in url2:
step1url =url + j['href']
print step1url
step2(step1url)
except Exception,e:
print e
我们在产品分类的同时需要确定我们所访问的地址是产品还是又一个分类的产品地址(所以需要判断我们访问的地址是否含有if判断标志):
def step2(step1url):
try:
headers = {
。。。。
}
r = requests.get(step1url,headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
a = soup.find('div',id='divTbl')
if a:
url = soup.find_all('td',class_='S-ITabs')
for i in url:
classifyurl = i.find_all('a')
for j in classifyurl:
step2url = url + j['href']
#print step2url
step3(step2url)
else:
postdata(step1url)
当我们if判断后为真则将第二页的分类网址获取到(第一个步骤),否则执行postdata函数,将网页产品地址抓取!
def producturl(url):
try:
p1url = doc.xpath(正则表达式)
for i in xrange(1,len(p1url) + 1):
p2url = doc.xpath(正则表达式)
if len(p2url) > 0:
producturl = url + p2url[0].get('href')
count = db[table].find({'url':producturl}).count()
if count <= 0:
sn = getNewsn()
db[table].insert({"sn":sn,"url":producturl})
print str(sn) + 'inserted successfully'
else:
'url exist'
except Exception,e:
print e
其中为我们所获取到的产品地址并存入mongodb中,sn作为地址的新id。
下面我们需要在mongodb中通过新id索引来获取我们的网址并进行访问,对产品进行数据分析并抓取,将数据更新进数据库内!
其中用到最多的BeautifulSoup这个模块,但是对于存在于js的价值数据使用BeautifulSoup就用起来很吃力,所以对于js中的数据我推荐使用xpath,但是解析网页就需要用到HTML.document_fromstring(url)方法来解析网页。
对于xpath抓取价值数据的同时一定要细心!如果想了解xpath就在下面留言,我会尽快回答!
def parser(sn,url):
try:
headers = {
。。。。。。
}
r = requests.get(url, headers=headers,timeout=30)
html = r.content
soup = BeautifulSoup(html,"lxml")
dt = {}
#partno
a = soup.find("meta",itemprop="mpn")
if a:
dt['partno'] = a['content']
#manufacturer
b = soup.find("meta",itemprop="manufacturer")
if b:
dt['manufacturer'] = b['content']
#description
c = soup.find("span",itemprop="description")
if c:
dt['description'] = c.get_text().strip()
#price
price = soup.find("table",class_="table table-condensed occalc_pa_table")
if price:
cost = {}
for i in price.find_all('tr'):
if len(i) > 1:
td = i.find_all('td')
key=td[0].get_text().strip().replace(',','')
val=td[1].get_text().replace(u'\u20ac','').strip()
if key and val:
cost[key] = val
if cost:
dt['cost'] = cost
dt['currency'] = 'EUR'
#quantity
d = soup.find("input",id="ItemQuantity")
if d:
dt['quantity'] = d['value']
#specs
e = soup.find("div",class_="row parameter-container")
if e:
key1 = []
val1= []
for k in e.find_all('dt'):
key = k.get_text().strip().strip('.')
if key:
key1.append(key)
for i in e.find_all('dd'):
val = i.get_text().strip()
if val:
val1.append(val)
specs = dict(zip(key1,val1))
if specs:
dt['specs'] = specs
print dt
if dt:
db[table].update({'sn':sn},{'$set':dt})
print str(sn) + ' insert successfully'
time.sleep(3)
else:
error(str(sn) + '\t' + url)
except Exception,e:
error(str(sn) + '\t' + url)
print "Don't data!"
最后全部程序运行,将价值数据分析处理并存入数据库中!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30