SPSS回归分析:曲线估计
一、概念(分析-回归-曲线估计)
曲线估计过程为11种不同的曲线估计回归模型生成曲线估计回归统计量和相关的图。将对每个因变量生成一个单独的模型。也可以将预测值、残差和预测区间保存为新变量。
二、模型(分析-回归-曲线估计)
您可以选择一个或多个曲线估计回归模型。要确定使用哪种模型,请绘制数据。如果变量显示为线性相关,则使用简单线性回归模型。当变量不是线性相关时,请尝试转换数据。当转换没有帮助时,则可能需要更复杂的模型。查看数据的散点图;如果该图看起来像是您了解的某个数学函数,则将数据与该类型的模型进行拟合。例如,如果数据看起来像指数函数,请使用指数模型。
1、线性.方程为Y = b0 + (b1 * t)的模型。按时间的线性函数建模的序列值。
2、对数.方程为Y = b0 + (b1 * ln(t))的模型。
3、逆模型.方程为Y = b0 + (b1 / t)的模型。
4、二次.方程为Y = b0 + (b1 * t) + (b2 * t**2)的模型。二次模型可用来对“减弱”的序列或阻尼衰减的序列进行建模。
5、三次.由方程Y = b0 + (b1 * t) + (b2 * t**2) + (b3 * t**3)定义的模型。
6、幂.方程式为Y = b0 * (t**b1)或ln(Y) = ln(b0) + (b1 * ln(t))的模型。
7、复合.方程为Y = b0 * (b1**t)或ln(Y) = ln(b0) + (ln(b1) * t)的模型。
8、S.方程式为Y = e**(b0 + (b1/t)) or ln(Y) = b0 + (b1/t)的模型。
9、逻辑.方程为Y = 1 / (1/u + (b0 * (b1**t)))或ln(1/y-1/u)= ln (b0) + (ln(b1) * t)的模型,其中u是上界值。选择“逻辑”之后,请指定用在回归方程中使用的上界值。该值必须是一个大于最大因变量值的正数。
10、增长.方程式为Y = e**(b0 + (b1 * t))或ln(Y) = b0 + (b1 * t)的模型。
11、指数.方程为Y = b0 * (e**(b1 * t)) or ln(Y) = ln(b0) + (b1 * t)的模型。
三、保存(分析-回归-保存)
1、保存变量。对于每个选定的模型,您可以保存预测值、残差(因变量的观察值减去模型预测值)和预测区间(上限和下限)。新变量名称和描述标签显示在输出窗口中的表中。
2、预测个案。在活动数据集中,如果选择时间而不是变量作为自变量,则可以指定超出时间序列结尾的预测期。您可以选择以下选项之一:◎从估计期到最后一个个案的预测。在估计期内的个案的基础上预测文件中所有个案的值。显示在对话框底端的估计期可通过“数据”菜单上的“选择个案”选项的“范围”子对话框来定义。如果未定义任何估计期,则使用所有个案来预测值。◎预测范围。根据估计期中的个案,预测指定日期、时间或观察号范围内的值。此功能可以用于预测超出时间序列中最后一个个案的值。当前定义的日期变量确定可用于指定预测期结尾的文本框。如果没有已定义的日期变量,则您可以指定结尾的观察(个案)号。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21