现实世界中数据一般都是复杂和高维的,比如描述一个人,有姓名、年龄、性别、受教育程度、收入、地址、电话等等几十种属性,如此多的属性对于数据分析是一个严重的挑战,除了极大增加建模的成本和模型的复杂度,往往也会导致过拟合问题,因此在实际处理过程中,一些降维的方法是必不可少,其中用的比较多的有主成分分析(PCA)、奇异值分解(SVD)、特征选择(Feature
Select),本文将对PCA和SVD作简单的介绍,并力图通过案例加深对这两种降维方法的理解。
1 主成分分析PCA
1.1 R语言案例
在R语言中PCA对应函数是princomp,来自stats包。以美国的各州犯罪数据为对象进行分析,数据集USArrests在graphics包中。
> library(stats) ##princomp
> head(USArrests)
Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
> summary(pc.cr <- princomp(USArrests, cor = TRUE))
##每个主成分对方差的贡献比例,显然Comp.1 + Comp2所占比例超过85%,因此能够用前两个主成分来表示整个数据集,也将数据从4维降到两维
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
接下来查看每个特征在主成分中所在的比例
> loadings(pc.cr)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.536 0.418 -0.341 0.649
Assault -0.583 0.188 -0.268 -0.743
UrbanPop -0.278 -0.873 -0.378 0.134
Rape -0.543 -0.167 0.818
Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00
根据以上数据可很容易转换为几个数学等式:
Comp1 = -0.536 * Murder + (-0.583) * Assault + (-0.278)*UrbanPop + (-0.543)* Rape
Comp2 = 0.418 * Murder + 0.188 * Assault + (-0.873)*UrbanPop + (-0.167)* Rape
可以用Comp1、Comp2两个维度的数据来表示各州,在二维图上展现各州个聚类关系。
> head(pc.cr$scores) ##scores包含有各州在四个主成分的得分
Comp.1 Comp.2 Comp.3 Comp.4
Alabama -0.98556588 1.13339238 -0.44426879 0.156267145
Alaska -1.95013775 1.07321326 2.04000333 -0.438583440
Arizona -1.76316354 -0.74595678 0.05478082 -0.834652924
Arkansas 0.14142029 1.11979678 0.11457369 -0.182810896
California -2.52398013 -1.54293399 0.59855680 -0.341996478
##将前两个Comp提取出来,转换为data.frame方便会面绘图
> stats.arrests <- data.frame(pc.cr$scores[, -c(3:4)])
> head(stats.arrests)
Comp.1 Comp.2
Alabama -0.9855659 1.1333924
Alaska -1.9501378 1.0732133
Arizona -1.7631635 -0.7459568
> library(ggplot2)
##展现各州的分布情况,观察哪些州比较异常,哪些能够进行聚类
> ggplot(stats.arrests, aes(x = Comp.1, y = Comp.2)) +
+ xlab("First Component") + ylab("Second Component") +
+ geom_text(alpha = 0.75, label = rownames(stats.arrests), size = 4)
有兴趣的同学还可以,分析南北各州在犯罪数据上的迥异。
1.2 PCA理论基础
经过上一小节对PCA的简单应用,应该可以体会到PCA在降维处理上的魅力,下面简单介绍PCA的理论基础,对于更好的理解和应用PCA会非常有帮助。
PCA本质就是将数据投影在众多正交向量上,根据投影后数据的方差大小,说明向量解释数据的程度,方差越大,解释的程度越大。以下图为例,数据投影在向量u的方差明显最大,因此u向量作为第一主成分,与u向量正交的v向量,作为第二主成分。
Nd
= dim(data) 代表数据的维数, Sc = num(Comp)代表主成分的个数(Nd = Sc ),在实际情况中,往往取前k
<<
Nd个主成分便能解释数据的方差程度超过90%,因此能够在只丢失少量消息的情况,达到大规模减少数据维度的效果,无论对于建立模型、提升性能、减少成本都有很大的意义。
从某种意义上讲,PCA只是将很多相互间存在线性关系的特征,转换成新的、相互独立的特征,从而减少特征数量。对此,它需要借助特征值来找到方差最大的主成分,每一个特征值对应一个特征向量,特征值越大,特征向量解释数据矩阵的方差的程度越高。因此,只需要将特征值从大到小排列,取出前k个特征向量,便能确定k个最重要的主成分。
PCA算法通常包括如下5个步骤:
A 平均值归一化,减去每个特征的平均值,保证归一化后的数据平均值为0
B 计算协方差矩阵,每两个特征之间的协方差
C 计算协方差矩阵的特征向量和特征值
D 将特征向量根据对应的特征值大小降序排列,特征向量按列组成FeatureVector = (eig_1, eig_2, …,eig_n)
E RowFeatureVector = t(FeatureVector) (转置),eig_1变为第一行,RowDataAdjusted = t(DataAdjusted), 特征行变为列,得到最终的数据。
FinalData = RowFeatureVector X RowDataAdjusted
从维度变化的角度出发
协方差矩阵:n x n , FeatureVector: n x n,RowFeatureVector:n x n, n为特征数量
DataAdjusted:m x n, RowDataAdjusted: n x m
取前k个特征向量, RowFeatureVector:k x n
那么FinalData: k x m, 这样便实现维度的降低。
2 奇异值分解(SVD)
2.1 案例研究
我们通过一张图片的处理来展示奇异值分解的魅力所在,对于图片的处理会用到R语言中raster和jpeg两个包。
##载入图片,并且显示出来
> library(raster)
Loading required package: sp
> library(jpeg)
> raster.photo <- raster("Rlogo.jpg")
> photo.flip <- flip(raster.photo, direction = "y")
##将数据转换为矩阵形式
> photo.raster <- t(as.matrix(photo.flip))
> dim(photo.raster)
[1] 288 196
> image(photo.raster, col = grey(seq(0, 1, length = 256))) ##灰化处理
##奇异值进行分解
> photo.svd <- svd(photo.raster)
> d <- diag(photo.svd$d)
> v <- as.matrix(photo.svd$v)
> u <- photo.svd$u
取第一个奇异值进行估计,如下左图
> u1 <- as.matrix(u[, 1])
> d1 <- as.matrix(d[1, 1])
> v <- as.matrix(v[, 1])
> photo1 <- u1 %*% d1 %*% t(v)
> image(photo1, col = grey(seq(0, 1, length = 256)))
取前五十个奇异值进行模拟,基本能还原成最初的模样,如上右图
> u2 <- as.matrix(u[, 1:50])
> d2 <- as.matrix(d[1:50, 1:50])
> v2 <- as.matrix(v[, 1:50])
> photo2 <- u2 %*% d2 %*% t(v2)
> image(photo2, col = grey(seq(0, 1, length = 256)))
当我们尝试用更多的奇异值模拟时,会发现效果越来来越好,这就是SVD的魅力,对于降低数据规模、提高运算效率、节省存储空间有着非常棒的效果。原本一张图片需要288
X 196的存储空间,经过SVD处理后,在保证图片质量的前提下,只需288 X 50 + 50 X 50 + 196 X
50的存储空间仅为原来的一半。
2.1 SVD理论基础
SVD算法通过发现重要维度的特征,帮助更好的理解数据,从而在数据处理过程中减少不必要的属性和特征,PCA(主成分分析)只是SVD的一个特例。PCA针对的正方矩阵(协方差矩阵),而SVD可用于任何矩阵的分解。
对于任意m x n矩阵A,都有这样一个等式
Am x n = Um x r Sr x r VTn x r
U的列称为左奇异向量,V的列称为右奇异向量,S是一个对角线矩阵,对角线上的值称为奇异值,
r = min(n,
m)。U的列对应AAT的特征向量,V的列则是ATA的特征向量,奇异值是AAT和ATA共有特征值的开方。由于A可能不是正方矩阵,因此无法利用得到特征值和特征向量,因此需要进行变换,即AAT(m
x m)和ATA(n x n),这样就可以计算特征向量和特征值了。
A = USVT AT = VSUT
AAT = USVT VSUT = US2UT
AAT U = U S2
同样可以推导出: ATA V = V S2
总结下来,SVD算法主要有六步:
A 、计算出AAT
B 、计算出AAT的特征向量和特征值
C、计算出ATA
D 、计算出ATA的特征向量和特征值
E、计算ATA和ATA共有特征值的开方
F、计算出U、 S、 V
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20