现实世界中数据一般都是复杂和高维的,比如描述一个人,有姓名、年龄、性别、受教育程度、收入、地址、电话等等几十种属性,如此多的属性对于数据分析是一个严重的挑战,除了极大增加建模的成本和模型的复杂度,往往也会导致过拟合问题,因此在实际处理过程中,一些降维的方法是必不可少,其中用的比较多的有主成分分析(PCA)、奇异值分解(SVD)、特征选择(Feature
Select),本文将对PCA和SVD作简单的介绍,并力图通过案例加深对这两种降维方法的理解。
1 主成分分析PCA
1.1 R语言案例
在R语言中PCA对应函数是princomp,来自stats包。以美国的各州犯罪数据为对象进行分析,数据集USArrests在graphics包中。
> library(stats) ##princomp
> head(USArrests)
Murder Assault UrbanPop Rape
Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
> summary(pc.cr <- princomp(USArrests, cor = TRUE))
##每个主成分对方差的贡献比例,显然Comp.1 + Comp2所占比例超过85%,因此能够用前两个主成分来表示整个数据集,也将数据从4维降到两维
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
接下来查看每个特征在主成分中所在的比例
> loadings(pc.cr)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.536 0.418 -0.341 0.649
Assault -0.583 0.188 -0.268 -0.743
UrbanPop -0.278 -0.873 -0.378 0.134
Rape -0.543 -0.167 0.818
Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00
根据以上数据可很容易转换为几个数学等式:
Comp1 = -0.536 * Murder + (-0.583) * Assault + (-0.278)*UrbanPop + (-0.543)* Rape
Comp2 = 0.418 * Murder + 0.188 * Assault + (-0.873)*UrbanPop + (-0.167)* Rape
可以用Comp1、Comp2两个维度的数据来表示各州,在二维图上展现各州个聚类关系。
> head(pc.cr$scores) ##scores包含有各州在四个主成分的得分
Comp.1 Comp.2 Comp.3 Comp.4
Alabama -0.98556588 1.13339238 -0.44426879 0.156267145
Alaska -1.95013775 1.07321326 2.04000333 -0.438583440
Arizona -1.76316354 -0.74595678 0.05478082 -0.834652924
Arkansas 0.14142029 1.11979678 0.11457369 -0.182810896
California -2.52398013 -1.54293399 0.59855680 -0.341996478
##将前两个Comp提取出来,转换为data.frame方便会面绘图
> stats.arrests <- data.frame(pc.cr$scores[, -c(3:4)])
> head(stats.arrests)
Comp.1 Comp.2
Alabama -0.9855659 1.1333924
Alaska -1.9501378 1.0732133
Arizona -1.7631635 -0.7459568
> library(ggplot2)
##展现各州的分布情况,观察哪些州比较异常,哪些能够进行聚类
> ggplot(stats.arrests, aes(x = Comp.1, y = Comp.2)) +
+ xlab("First Component") + ylab("Second Component") +
+ geom_text(alpha = 0.75, label = rownames(stats.arrests), size = 4)
有兴趣的同学还可以,分析南北各州在犯罪数据上的迥异。
1.2 PCA理论基础
经过上一小节对PCA的简单应用,应该可以体会到PCA在降维处理上的魅力,下面简单介绍PCA的理论基础,对于更好的理解和应用PCA会非常有帮助。
PCA本质就是将数据投影在众多正交向量上,根据投影后数据的方差大小,说明向量解释数据的程度,方差越大,解释的程度越大。以下图为例,数据投影在向量u的方差明显最大,因此u向量作为第一主成分,与u向量正交的v向量,作为第二主成分。
Nd
= dim(data) 代表数据的维数, Sc = num(Comp)代表主成分的个数(Nd = Sc ),在实际情况中,往往取前k
<<
Nd个主成分便能解释数据的方差程度超过90%,因此能够在只丢失少量消息的情况,达到大规模减少数据维度的效果,无论对于建立模型、提升性能、减少成本都有很大的意义。
从某种意义上讲,PCA只是将很多相互间存在线性关系的特征,转换成新的、相互独立的特征,从而减少特征数量。对此,它需要借助特征值来找到方差最大的主成分,每一个特征值对应一个特征向量,特征值越大,特征向量解释数据矩阵的方差的程度越高。因此,只需要将特征值从大到小排列,取出前k个特征向量,便能确定k个最重要的主成分。
PCA算法通常包括如下5个步骤:
A 平均值归一化,减去每个特征的平均值,保证归一化后的数据平均值为0
B 计算协方差矩阵,每两个特征之间的协方差
C 计算协方差矩阵的特征向量和特征值
D 将特征向量根据对应的特征值大小降序排列,特征向量按列组成FeatureVector = (eig_1, eig_2, …,eig_n)
E RowFeatureVector = t(FeatureVector) (转置),eig_1变为第一行,RowDataAdjusted = t(DataAdjusted), 特征行变为列,得到最终的数据。
FinalData = RowFeatureVector X RowDataAdjusted
从维度变化的角度出发
协方差矩阵:n x n , FeatureVector: n x n,RowFeatureVector:n x n, n为特征数量
DataAdjusted:m x n, RowDataAdjusted: n x m
取前k个特征向量, RowFeatureVector:k x n
那么FinalData: k x m, 这样便实现维度的降低。
2 奇异值分解(SVD)
2.1 案例研究
我们通过一张图片的处理来展示奇异值分解的魅力所在,对于图片的处理会用到R语言中raster和jpeg两个包。
##载入图片,并且显示出来
> library(raster)
Loading required package: sp
> library(jpeg)
> raster.photo <- raster("Rlogo.jpg")
> photo.flip <- flip(raster.photo, direction = "y")
##将数据转换为矩阵形式
> photo.raster <- t(as.matrix(photo.flip))
> dim(photo.raster)
[1] 288 196
> image(photo.raster, col = grey(seq(0, 1, length = 256))) ##灰化处理
##奇异值进行分解
> photo.svd <- svd(photo.raster)
> d <- diag(photo.svd$d)
> v <- as.matrix(photo.svd$v)
> u <- photo.svd$u
取第一个奇异值进行估计,如下左图
> u1 <- as.matrix(u[, 1])
> d1 <- as.matrix(d[1, 1])
> v <- as.matrix(v[, 1])
> photo1 <- u1 %*% d1 %*% t(v)
> image(photo1, col = grey(seq(0, 1, length = 256)))
取前五十个奇异值进行模拟,基本能还原成最初的模样,如上右图
> u2 <- as.matrix(u[, 1:50])
> d2 <- as.matrix(d[1:50, 1:50])
> v2 <- as.matrix(v[, 1:50])
> photo2 <- u2 %*% d2 %*% t(v2)
> image(photo2, col = grey(seq(0, 1, length = 256)))
当我们尝试用更多的奇异值模拟时,会发现效果越来来越好,这就是SVD的魅力,对于降低数据规模、提高运算效率、节省存储空间有着非常棒的效果。原本一张图片需要288
X 196的存储空间,经过SVD处理后,在保证图片质量的前提下,只需288 X 50 + 50 X 50 + 196 X
50的存储空间仅为原来的一半。
2.1 SVD理论基础
SVD算法通过发现重要维度的特征,帮助更好的理解数据,从而在数据处理过程中减少不必要的属性和特征,PCA(主成分分析)只是SVD的一个特例。PCA针对的正方矩阵(协方差矩阵),而SVD可用于任何矩阵的分解。
对于任意m x n矩阵A,都有这样一个等式
Am x n = Um x r Sr x r VTn x r
U的列称为左奇异向量,V的列称为右奇异向量,S是一个对角线矩阵,对角线上的值称为奇异值,
r = min(n,
m)。U的列对应AAT的特征向量,V的列则是ATA的特征向量,奇异值是AAT和ATA共有特征值的开方。由于A可能不是正方矩阵,因此无法利用得到特征值和特征向量,因此需要进行变换,即AAT(m
x m)和ATA(n x n),这样就可以计算特征向量和特征值了。
A = USVT AT = VSUT
AAT = USVT VSUT = US2UT
AAT U = U S2
同样可以推导出: ATA V = V S2
总结下来,SVD算法主要有六步:
A 、计算出AAT
B 、计算出AAT的特征向量和特征值
C、计算出ATA
D 、计算出ATA的特征向量和特征值
E、计算ATA和ATA共有特征值的开方
F、计算出U、 S、 V
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30