python对DICOM图像的读取方法详解
DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。下面这篇文章主要给大家介绍了关于python对DICOM图像读取的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
DICOM介绍
DICOM3.0图像,由医学影像设备产生标准医学影像图像,DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当前大约有百亿级符合DICOM标准的医学图像用于临床使用。
看似神秘的图像文件,究竟是如何读取呢?网上随便 一搜,都有很多方法,但缺乏比较系统的使用方法,下文综合百度资料,结合python2.7,讲解如何读取及使用DICOM图像。
读取DICOM图像,需要以下几个库:pydicom、CV2、numpy、matplotlib。pydicom专门处理dicom图像的python专用包,numpy高效处理科学计算的包,依据数据绘图的库。
安装:
pip install matplotlib
pip install opencv-python #opencv的安装,小度上基本都是要下载包,安装包后把包复制到某个文件夹下,
#后来我在https://pypi.python.org/pypi/opencv-python找到这种pip的安装方法,亲测可用
pip install pydicom
pip install numpy
如果没有记错,安装pydicom时,也会自动把numpy安装上。
安装好这些库后,就可以对dicom文件操作。
具体看下面代码:
#-*-coding:utf-8-*-
import cv2
import numpy
import dicom
from matplotlib import pyplot as plt
dcm = dicom.read_file("AT0001_100225002.DCM")
dcm.image = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept
slices = []
slices.append(dcm)
img = slices[ int(len(slices)/2) ].image.copy()
ret,img = cv2.threshold(img, 90,3071, cv2.THRESH_BINARY)
img = numpy.uint8(img)
im2, contours, _ = cv2.findContours(img,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
mask = numpy.zeros(img.shape, numpy.uint8)
for contour in contours:
cv2.fillPoly(mask, [contour], 255)
img[(mask > 0)] = 255
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,2))
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
img2 = slices[ int(len(slices)/2) ].image.copy()
img2[(img == 0)] = -2000
plt.figure(figsize=(12, 12))
plt.subplot(131)
plt.imshow(slices[int(len(slices) / 2)].image, 'gray')
plt.title('Original')
plt.subplot(132)
plt.imshow(img, 'gray')
plt.title('Mask')
plt.subplot(133)
plt.imshow(img2, 'gray')
plt.title('Result')
plt.show()
在DICOM图像里,包含了患者的相关信息的字典,我们可以通过dir查看DICOM文件有什么信息,可以通过字典返回相关的值。
import dicom
import json
def loadFileInformation(filename):
information = {}
ds = dicom.read_file(filename)
information['PatientID'] = ds.PatientID
information['PatientName'] = ds.PatientName
information['PatientBirthDate'] = ds.PatientBirthDate
information['PatientSex'] = ds.PatientSex
information['StudyID'] = ds.StudyID
information['StudyDate'] = ds.StudyDate
information['StudyTime'] = ds.StudyTime
information['InstitutionName'] = ds.InstitutionName
information['Manufacturer'] = ds.Manufacturer
print dir(ds)
print type(information)
return information
a=loadFileInformation('AT0001_100225002.DCM')
print a
总结
以上就是这篇文章的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14