用数据讲故事的黄金时代 数据人才不可或缺
不管是从商业还是政府大数据的角度来说,中国都已经成为名副其实的“数据大国”。到2020年,中国的全球数据占比将达到18%,超越美国成为世界第一。但数据大国不等于数据强国。数据强国最重要的标志不是数据拥有量,而是使数据产生价值的处理和分析能力。
因而,在组织使用数据来做出更好的业务决策的过程中,数据工程师将是不可或缺的一部分。2013 至 2015 年间,数据工程师的数量增加了一倍以上。截至 2017 年 10 月,LinkedIn 招聘信息中有超过 2500 个 “数据工程师” 的空缺职位,反映出该专业的需求持续增长。
那么这个角色的职责是什么,又为何如此重要?数据工程师负责以一种可用于提供见解和决策的方式,从业务的基础系统中提取数据。随着数据速率和存储容量的增长,既掌握技术知识,又了解业务需求的人员开始变得越来越重要。数据工程师一职需要独特的技能组合。他/她不仅需要了解后端、数据的内容以及数据如何为业务用户提供服务,还需要开发技术解决方案以使数据便于使用。
用 Tableau 的资深招聘人员 Michael Ashe 的话来说,“我不是新手。我从事技术招聘工作已经超过 17 年。数据和存储容量的持续增长不足为奇,我亲眼目睹这一切发生巨大的飞跃。数据总是需要调整。企业需要这一角色。他们需要深入了解特定数据以做出业务决策。作为企业的重要角色,数据工程师的需求绝对会继续增加。”
除此之外,由于数据处理是一个多层次的过程,每一个层次都需要不同的技能。因此除了“数据工程师”之类负责数据清理和准备的工作人员以外,具有决策能力的首席信息官也是实现数据强国不可缺少的助力之一。
数据和分析正在成为每个组织的核心。这是无可争辩的。随着组织的发展,组织将分析逐步提到更高的战略地位和责任水平。过去,大多数商业智能工作都被安排给首席信息官 (CIO),负责监管整个组织的数据资产的标准化、整合和管控情况,并需要提交一致性报告。这使得 BI 计划(数据管控、建立分析模型等)与 CIO 职权范围内的其他策略计划(如 IT 架构、系统安全或网络策略)互相竞争,并会时常抑制 BI 的成功和影响。
在某些情况下,由于获取见解的速度与数据的安全性和管控之间存在矛盾,CIO 和业务人员之间也会产生隔阂。为了通过分析投资从数据中获得可操作性的见解,组织越发意识到需要建立高管问责制以创建分析文化。对于越来越多的组织而言,此问题的答案是任命首席数据官 (CDO) 或首席分析官 (CAO) 引导业务流程变革,克服文化障碍,并向组织各级传达分析的价值。这可以让 CIO 将战略重点更多的放到数据安全性等方面。
如今,组织纷纷任命 CDO 和/或 CAO 来负责业务影响和改进成果,这一事实也体现了现代组织中数据和分析的战略价值。高级主管们现在对于如何部署分析策略有了积极主动的对话。CDO 不再等待特定报告的请求,而是问:“我们如何预测或快速适应业务请求?”
为了最有效地在高管岗位下构建高效团队,组织正在投入更多资金和资源。据 Gartner 统计,80% 的大型企业将在 2020 年之前全面落实 CDO 办公室。目前,办公室中的平均员工人数是 38 人,但有 66% 的受访组织预计该办公室的预算将会增长。
Tableau的市场情报总监 Josh Parenteau 指出,CDO角色的特点是“注重结果”。他表示:“这不仅仅是将数据放入数据仓库然后希望有人去使用它,数据部门负责定义使用的含义,并确保您能够从中获得价值。”这种结果导向是至关重要的,特别是其与 Gartner 2016 年 CDO调查的前三个目标相一致,其中包括更高的客户亲密度、更大的竞争优势和更高的效率。这些目标正在推动Wells Fargo、IBM、Aetna和Ancestry 等公司落实CDO制度,旨在将其数据策略提升到更高水平,使首席数据官在 2018 年成为业务的主角。
PwC 最近的一项研究表明,到 2021 年,69%的雇主将要求应聘者掌握数据科学和分析技能。2017年Glassdoor提供的报告称, “数据科学” 连续第二年成为 “顶尖职位” 。随着雇主需求的增加,填补高水平数据专业人才缺口的紧迫性迫在眉睫,但现实存在着差距。同一份 PwC报告中指出,只有23%的大学毕业生具备在雇主需求层面上进行竞争的必要技能。麻省理工学院最近的一项调查发现,40%的管理人员难以招聘到分析人才。
我国也正面着临相同的问题:教学上,缺乏师资;实践上,与企业实际情况断轨。针对这一情况,阿里云2015年6月联合慧科教育集团推出了大学合作计划,计划用3年时间培养5万数据科学家。除了业界,国内高校也在寻觅解决方法。继2016年北京大学、中南大学、对外经贸大学首批设立大数据相关学科后,中国人民大学、北京邮电大学、复旦大学等32所高校成为第二批成功申请 “数据科学与大数据技术” 本科新专业的高校。业界与学界的共同努力将为中国迎合大数据趋势提供高级人才保障。
针对大数据人才培养方法,清华–青岛数据科学研究院执行副院长韩亦舜表示,数据人才除了需要专业知识,更需要数据思维。大数据技术本身只是一种处理数据的方法,能够在数据思维的指导下,分析数据、解读数据的人才是社会所需要的。因此,可以说人文学科和讲述故事促进了数据分析行业的发展。更令人惊讶的是,从前专门由 IT 和高级用户完成的创建分析仪表板等技术工作,正在被熟悉讲述故事技能(一种主要来源于人文学科的技能组合)的用户所接管。此外,企业更重视聘用能够通过人文学和说服力(而不仅仅是分析本身)使用数据和见解来影响变革和推动转型的员工。
随着技术平台变得越来越易于使用,人们对技术专长的重视程度也有所降低。每个人都可以轻松处理数据,无需曾经要求的高深技术技能。拥有更广泛技能的人员(包括人文学者)在缺少数据工作者的行业和组织中汇集,并形成影响力。随着更多的组织将数据分析作为业务重点,这些人文学科数据管理员将帮助公司认识到,支持广大员工自主进行数据分析会带来竞争优势。
雇佣新一代的数据工作者已成为大势所趋。一些技术型公司由有着人文学科教育背景的创始人领导或深受其影响。这包括 Slack、LinkedIn、PayPal、Pinterest 和其他几家高绩效技术公司的创始人和高管。
随着分析发展过程中的人文成分增多,科学成分减少,分析的重点已经从简单的数据传递转变为精心制作数据驱动型故事,这些故事将无一例外地帮助制定决策。组织以前所未有的规模积极接纳数据,这种顺势而为意味着要更加强调讲述故事和表述数据的重要性。我们正处在讲述数据故事的黄金时代,在您的组织中的某处,可能就有数据故事讲述者正等待着为您揭开下一次重大发现。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20